Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations

A deterministic direct quantum communication protocol is proposed by using swapping quantum entanglement and local unitary operations. The present protocol is secure for the proof of the security of the present scheme, the same as that in the two-step protocol [Phys. Rev. A 68 (2003) 042317]. Additionally, the advantages and disadvantages of the present protocol is also discussed.

[1]  Deng Fu-Guo,et al.  A Theoretical Scheme for Multi-user Quantum Key Distribution with N Einstein-Podolsky-Rosen Pairs on a Passive Optical Network , 2002 .

[2]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[3]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.

[4]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[5]  H. Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001, quant-ph/0111106.

[6]  Adán Cabello Addendum to ''Quantum key distribution without alternative measurements'' , 2001 .

[7]  A. Zeilinger,et al.  Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.

[8]  V. Vedral,et al.  Security of EPR-based quantum cryptography against incoherent symmetric attacks , 2001, quant-ph/0103058.

[9]  A. Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[10]  L. Hardy,et al.  Entanglement-swapping chains for general pure states , 2000, quant-ph/0006132.

[11]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[12]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[13]  H. Chau,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1998, Science.

[14]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[15]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[16]  Masato Koashi,et al.  Quantum Cryptography Based on Split Transmission of One-Bit Information in Two Steps , 1997 .

[17]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[18]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[20]  S. Barnett,et al.  Multi-user Quantum Cryptography on Optical Networks , 1995 .

[21]  Vaidman,et al.  Quantum cryptography based on orthogonal states. , 1995, Physical review letters.

[22]  N. Imoto,et al.  Quantum cryptography with coherent states , 1995, Technical Digest. CLEO/Pacific Rim'95. The Pacific Rim Conference on Lasers and Electro-Optics.

[23]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[24]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[25]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[26]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.