The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy

[1]  Luca Scorrano,et al.  Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether , 2016, Proceedings of the National Academy of Sciences.

[2]  C. Shaw,et al.  ALS/FTD‐associated FUS activates GSK‐3β to disrupt the VAPB–PTPIP51 interaction and ER–mitochondria associations , 2016, EMBO reports.

[3]  A. Luini,et al.  Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2. , 2016, Cell reports.

[4]  M. Ankarcrona,et al.  Mitofusin‐2 knockdown increases ER–mitochondria contact and decreases amyloid β‐peptide production , 2016, Journal of cellular and molecular medicine.

[5]  Wenxian Wu,et al.  FUNDC1 regulates mitochondrial dynamics at the ER–mitochondrial contact site under hypoxic conditions , 2016, The EMBO journal.

[6]  P. Matarrese,et al.  Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation , 2016, Autophagy.

[7]  P. Agostinis,et al.  ORP5/ORP8 localize to endoplasmic reticulum–mitochondria contacts and are involved in mitochondrial function , 2016, EMBO reports.

[8]  J. Diehl,et al.  Selective Vulnerability of Cancer Cells by Inhibition of Ca(2+) Transfer from Endoplasmic Reticulum to Mitochondria. , 2016, Cell reports.

[9]  Christopher C. J. Miller,et al.  There's Something Wrong with my MAM; the ER–Mitochondria Axis and Neurodegenerative Diseases , 2016, Trends in Neurosciences.

[10]  B. Asselbergh,et al.  Mitochondria-associated membranes as hubs for neurodegeneration , 2016, Acta Neuropathologica.

[11]  G. Voeltz,et al.  Structure and function of ER membrane contact sites with other organelles , 2015, Nature Reviews Molecular Cell Biology.

[12]  I. Nabi,et al.  Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria , 2015, Journal of Cell Science.

[13]  Edward L. Huttlin,et al.  The BioPlex Network: A Systematic Exploration of the Human Interactome , 2015, Cell.

[14]  W. Prinz,et al.  Form follows function: the importance of endoplasmic reticulum shape. , 2015, Annual review of biochemistry.

[15]  Elisa Greotti,et al.  Mitofusin 2 ablation increases endoplasmic reticulum–mitochondria coupling , 2015, Proceedings of the National Academy of Sciences.

[16]  M. Maiuri,et al.  BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy , 2015, Autophagy.

[17]  J. Dikeakos,et al.  The multifunctional sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate p21-dependent cell-cycle arrest. , 2014, Cell reports.

[18]  L. Petrucelli,et al.  ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43 , 2014, Nature Communications.

[19]  B. Westermann,et al.  Mitochondrial ER contacts are crucial for mitophagy in yeast. , 2014, Developmental cell.

[20]  T. Yoshimori,et al.  The autophagosome: origins unknown, biogenesis complex , 2013, Nature Reviews Molecular Cell Biology.

[21]  E. Schon,et al.  Mitochondria-associated ER membranes in Alzheimer disease , 2013, Molecular and Cellular Neuroscience.

[22]  B. Winblad,et al.  Modulation of the endoplasmic reticulum–mitochondria interface in Alzheimer’s disease and related models , 2013, Proceedings of the National Academy of Sciences.

[23]  Yasushi Hiraoka,et al.  Autophagosomes form at ER–mitochondria contact sites , 2013, Nature.

[24]  K. Laband,et al.  MCUR1 is an essential component of mitochondrial Ca(2+) uptake that regulates cellular metabolism. , 2013, Nature cell biology.

[25]  J. Kolesar,et al.  MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism , 2012, Nature Cell Biology.

[26]  L. Orci,et al.  Mitofusin-2 Independent Juxtaposition of Endoplasmic Reticulum and Mitochondria: An Ultrastructural Study , 2012, PloS one.

[27]  G. Voeltz,et al.  Endoplasmic reticulum–mitochondria contacts: function of the junction , 2012, Nature Reviews Molecular Cell Biology.

[28]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[29]  J. Foskett,et al.  Mitochondrial Ca(2+) signals in autophagy. , 2012, Cell calcium.

[30]  Sangeeta Khare,et al.  Guidelines for the use and interpretation of assays formonitoring autophagy (3rd edition) , 2016 .

[31]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[32]  Current Biology , 2012, Current Biology.

[33]  P. Agostinis,et al.  Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated , 2011, Autophagy.

[34]  C. Shaw,et al.  VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis , 2011, Human molecular genetics.

[35]  M. Radi,et al.  ATP-competitive inhibitors of mTOR: an update. , 2011, Current medicinal chemistry.

[36]  A. Xu,et al.  Nuclear permeable ruthenium(II) β-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. , 2010, Journal of medicinal chemistry.

[37]  M. Birnbaum,et al.  Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria , 2010, Cell.

[38]  Peter K. Kim,et al.  Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation , 2010, Cell.

[39]  S. Joseph,et al.  Role of Inositol Trisphosphate Receptors in Autophagy in DT40 Cells , 2010, The Journal of Biological Chemistry.

[40]  E. Morselli,et al.  The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1 , 2009, Cell Death and Differentiation.

[41]  Robert Day,et al.  At the crossroads of homoeostasis and disease: roles of the PACS proteins in membrane traffic and apoptosis. , 2009, The Biochemical journal.

[42]  Daniel J Klionsky,et al.  In search of an “autophagomometer” , 2009, Autophagy.

[43]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[44]  E. Eskelinen To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells , 2008, Autophagy.

[45]  N. Mizushima,et al.  Autophagy: process and function. , 2007, Genes & development.

[46]  D. Andrews,et al.  Regulation of autophagy by the inositol trisphosphate receptor , 2007, Cell Death and Differentiation.

[47]  U. Landegren,et al.  Direct observation of individual endogenous protein complexes in situ by proximity ligation , 2006, Nature Methods.

[48]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[49]  D. Rubinsztein,et al.  Rapamycin pre-treatment protects against apoptosis. , 2006, Human molecular genetics.

[50]  D. Rubinsztein,et al.  Lithium induces autophagy by inhibiting inositol monophosphatase , 2005, The Journal of cell biology.

[51]  L. Wan,et al.  PACS‐2 controls endoplasmic reticulum–mitochondria communication and Bid‐mediated apoptosis , 2005, The EMBO journal.

[52]  T. Gunter,et al.  Mechanisms by which mitochondria transport calcium. , 1990, The American journal of physiology.

[53]  J. Diehl,et al.  Selective Vulnerability of Cancer Cells by Inhibition of Ca(2+) Transfer from Endoplasmic Reticulum to Mitochondria. , 2016, Cell reports.

[54]  E. Woodcock,et al.  Regulation of autophagy in cardiomyocytes by Ins(1,4,5)P(3) and IP(3)-receptors. , 2013, Journal of molecular and cellular cardiology.

[55]  Franghiz Ali-Zadeh,et al.  In search of , 2005 .