Multipartite-to-bipartite entanglement transformations and polynomial identity testing

We consider the problem of deciding if some multiparty entangled pure state can be converted, with a nonzero success probability, into a given bipartite pure state shared between two specified parties through local quantum operations and classical communication. We show that this question is equivalent to the well-known computational problem of deciding if a multivariate polynomial is identically zero. Efficient randomized algorithms developed to study the latter can thus be applied to our question. As a result, a given transformation is possible if and only if it is generically attainable by a simple randomized protocol.

[1]  Runyao Duan,et al.  Tripartite entanglement transformations and tensor rank. , 2008, Physical review letters.

[2]  A. Montanaro,et al.  On the dimension of subspaces with bounded Schmidt rank , 2007, 0706.0705.

[3]  B. M. Fulk MATH , 1992 .

[4]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[5]  Jens Eisert,et al.  Entanglement combing. , 2009, Physical review letters.

[6]  H. Flanders On Spaces of Linear Transformations with Bounded Rank , 1962 .

[7]  Barry C. Sanders,et al.  Deterministic entanglement of assistance and monogamy constraints , 2005 .

[8]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[9]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[10]  Robert W. Spekkens,et al.  Entanglement of assistance is not a bipartite measure nor a tripartite monotone , 2006 .

[11]  Manindra Agrawal,et al.  Primality and identity testing via Chinese remaindering , 2003, JACM.

[12]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[13]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[14]  Hong Liu,et al.  Improved construction for universality of determinant and permanent , 2006, Inf. Process. Lett..

[15]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[16]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[19]  László Lovász,et al.  Singular spaces of matrices and their application in combinatorics , 1989 .

[20]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[21]  John A. Smolin,et al.  Entanglement of assistance and multipartite state distillation , 2005 .

[22]  Frank Verstraete,et al.  Local vs. joint measurements for the entanglement of assistance , 2003, Quantum Inf. Comput..

[23]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[24]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[25]  H. Lo,et al.  Random bipartite entanglement from W and W-like states. , 2006, Physical review letters.