Self-hybridization within non-Hermitian localized plasmonic systems

The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1–4. The need to compensate for energy losses made the few successful attempts5–8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.A combined theoretical and experimental study of plasmonic nanostructures reveals a self-hybridization effect that arises from the non-Hermitian eigenmodes of localized surface plasmons.

[1]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[2]  Demetrios N. Christodoulides,et al.  PT optical lattices and universality in beam dynamics , 2010 .

[3]  K. Young,et al.  Waves in open systems via a biorthogonal basis , 1998 .

[4]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[5]  Soo-Young Lee,et al.  Divergent Petermann factor of interacting resonances in a stadium-shaped microcavity , 2008 .

[6]  P. Midgley,et al.  Excitation dependent Fano-like interference effects in plasmonic silver nanorods , 2014 .

[7]  Lukas Novotny,et al.  Strong coupling, energy splitting, and level crossings: A classical perspective , 2010 .

[8]  Xiang Zhang,et al.  Unidirectional light propagation at exceptional points. , 2013, Nature materials.

[9]  Satoshi Itoh,et al.  32 Neのスペクトロスコピーと「island of inversion」 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2009 .

[10]  Z. Musslimani,et al.  Optical Solitons in PT Periodic Potentials , 2008 .

[11]  Igor Aleksander,et al.  The Classical Perspective , 2003 .

[12]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[13]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[14]  D. Fredkin,et al.  Resonant behavior of dielectric objects (electrostatic resonances). , 2003, Physical review letters.

[15]  Young,et al.  Completeness and orthogonality of quasinormal modes in leaky optical cavities. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[16]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[17]  Soo-Young Lee Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor , 2009 .

[18]  H. Ditlbacher,et al.  Morphing a Plasmonic Nanodisk into a Nanotriangle , 2014, Nano letters.

[19]  D. Heiss Mathematical physics: Circling exceptional points , 2016 .

[20]  D. Savin,et al.  Probing Eigenfunction Nonorthogonality by Parametric Shifts of Resonance Widths , 2013, 1310.6671.

[21]  M. Lein,et al.  Explanation for the smoothness of the phase in molecular high-order harmonic generation , 2009 .

[22]  T. Stehmann,et al.  Observation of exceptional points in electronic circuits , 2003 .

[23]  T. Lepetit,et al.  Exceptional points in three-dimensional plasmonic nanostructures , 2016, 1609.02276.

[24]  M. Kociak,et al.  Nanocross: A Highly Tunable Plasmonic System , 2017 .

[25]  Ulrich Hohenester,et al.  MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles , 2011, Comput. Phys. Commun..

[26]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[27]  Javier Aizpurua,et al.  Numerical simulation of electron energy loss near inhomogeneous dielectrics , 1997 .

[28]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[29]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[30]  D. Brody Biorthogonal quantum mechanics , 2013, 1308.2609.

[31]  Hojeong Kwak,et al.  Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells , 2016, Scientific Reports.

[32]  C. Poulton,et al.  Group velocity in lossy periodic structured media , 2010 .

[33]  Jennifer A. Dionne,et al.  Non-Hermitian nanophotonic and plasmonic waveguides , 2014 .

[34]  Bray Convergent close-coupling calculation of electron-sodium scattering. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[35]  P. Berini,et al.  Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices , 2016, Nature Communications.

[36]  Ulrich Kuhl,et al.  Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.

[37]  M. Kociak,et al.  Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes , 2012 .

[38]  G. Fecher,et al.  Superconductivity in the Heusler family of intermetallics , 2012, 1205.0433.

[39]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[40]  P. T. Leung,et al.  Quasinormal-mode expansion for waves in open systems , 1998 .

[41]  Isaak D. Mayergoyz,et al.  Electrostatic (plasmon) resonances in nanoparticles , 2005 .

[42]  Jennifer A. Dionne,et al.  Parity-time-symmetric plasmonic metamaterials , 2013, 1306.0059.

[43]  C. Colliex,et al.  Improving energy resolution of EELS spectra: an alternative to the monochromator solution. , 2003, Ultramicroscopy.

[44]  Ulrich Hohenester,et al.  Influence of surface roughness on the optical properties of plasmonic nanoparticles , 2011, 1209.5200.

[45]  Dorje C Brody,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[46]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[47]  P. Rabl,et al.  Dynamically encircling exceptional points in a waveguide: asymmetric mode switching from the breakdown of adiabaticity , 2016, 1603.02325.

[48]  A. Hohenau,et al.  Edge Mode Coupling within a Plasmonic Nanoparticle , 2016, Nano letters.

[49]  Michael Isaacson,et al.  Surface plasmon excitation of objects with arbitrary shape and dielectric constant , 1989 .

[50]  O. N. Kirillov,et al.  Coupling of eigenvalues of complex matrices at diabolic and exceptional points , 2005 .

[51]  P. Berini,et al.  Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points , 2017, Nature Communications.

[52]  A Chaudhuri,et al.  First Penning trap mass measurements beyond the proton drip line. , 2008, Physical review letters.