Self-hybridization within non-Hermitian localized plasmonic systems
暂无分享,去创建一个
Mathieu Kociak | Pabitra Das | M. Kociak | R. Weil | L. Tizei | H. Lourenço-Martins | P. Das | Luiz H. G. Tizei | Hugo Lourenço-Martins | Raphaël Weil
[1] R. Morandotti,et al. Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.
[2] Demetrios N. Christodoulides,et al. PT optical lattices and universality in beam dynamics , 2010 .
[3] K. Young,et al. Waves in open systems via a biorthogonal basis , 1998 .
[4] Shanhui Fan,et al. Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.
[5] Soo-Young Lee,et al. Divergent Petermann factor of interacting resonances in a stadium-shaped microcavity , 2008 .
[6] P. Midgley,et al. Excitation dependent Fano-like interference effects in plasmonic silver nanorods , 2014 .
[7] Lukas Novotny,et al. Strong coupling, energy splitting, and level crossings: A classical perspective , 2010 .
[8] Xiang Zhang,et al. Unidirectional light propagation at exceptional points. , 2013, Nature materials.
[9] Satoshi Itoh,et al. 32 Neのスペクトロスコピーと「island of inversion」 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2009 .
[10] Z. Musslimani,et al. Optical Solitons in PT Periodic Potentials , 2008 .
[11] Igor Aleksander,et al. The Classical Perspective , 2003 .
[12] Z. Musslimani,et al. Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.
[13] W. Heiss,et al. The physics of exceptional points , 2012, 1210.7536.
[14] D. Fredkin,et al. Resonant behavior of dielectric objects (electrostatic resonances). , 2003, Physical review letters.
[15] Young,et al. Completeness and orthogonality of quasinormal modes in leaky optical cavities. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[16] C. Zener. Non-Adiabatic Crossing of Energy Levels , 1932 .
[17] Soo-Young Lee. Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor , 2009 .
[18] H. Ditlbacher,et al. Morphing a Plasmonic Nanodisk into a Nanotriangle , 2014, Nano letters.
[19] D. Heiss. Mathematical physics: Circling exceptional points , 2016 .
[20] D. Savin,et al. Probing Eigenfunction Nonorthogonality by Parametric Shifts of Resonance Widths , 2013, 1310.6671.
[21] M. Lein,et al. Explanation for the smoothness of the phase in molecular high-order harmonic generation , 2009 .
[22] T. Stehmann,et al. Observation of exceptional points in electronic circuits , 2003 .
[23] T. Lepetit,et al. Exceptional points in three-dimensional plasmonic nanostructures , 2016, 1609.02276.
[24] M. Kociak,et al. Nanocross: A Highly Tunable Plasmonic System , 2017 .
[25] Ulrich Hohenester,et al. MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles , 2011, Comput. Phys. Commun..
[26] Peter Nordlander,et al. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.
[27] Javier Aizpurua,et al. Numerical simulation of electron energy loss near inhomogeneous dielectrics , 1997 .
[28] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[29] L. Liz‐Marzán,et al. Mapping surface plasmons on a single metallic nanoparticle , 2007 .
[30] D. Brody. Biorthogonal quantum mechanics , 2013, 1308.2609.
[31] Hojeong Kwak,et al. Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells , 2016, Scientific Reports.
[32] C. Poulton,et al. Group velocity in lossy periodic structured media , 2010 .
[33] Jennifer A. Dionne,et al. Non-Hermitian nanophotonic and plasmonic waveguides , 2014 .
[34] Bray. Convergent close-coupling calculation of electron-sodium scattering. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[35] P. Berini,et al. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices , 2016, Nature Communications.
[36] Ulrich Kuhl,et al. Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.
[37] M. Kociak,et al. Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes , 2012 .
[38] G. Fecher,et al. Superconductivity in the Heusler family of intermetallics , 2012, 1205.0433.
[39] M. Segev,et al. Observation of parity–time symmetry in optics , 2010 .
[40] P. T. Leung,et al. Quasinormal-mode expansion for waves in open systems , 1998 .
[41] Isaak D. Mayergoyz,et al. Electrostatic (plasmon) resonances in nanoparticles , 2005 .
[42] Jennifer A. Dionne,et al. Parity-time-symmetric plasmonic metamaterials , 2013, 1306.0059.
[43] C. Colliex,et al. Improving energy resolution of EELS spectra: an alternative to the monochromator solution. , 2003, Ultramicroscopy.
[44] Ulrich Hohenester,et al. Influence of surface roughness on the optical properties of plasmonic nanoparticles , 2011, 1209.5200.
[45] Dorje C Brody,et al. Complex extension of quantum mechanics. , 2002, Physical review letters.
[46] Emil Prodan,et al. Plasmon Hybridization in Nanoparticle Dimers , 2004 .
[47] P. Rabl,et al. Dynamically encircling exceptional points in a waveguide: asymmetric mode switching from the breakdown of adiabaticity , 2016, 1603.02325.
[48] A. Hohenau,et al. Edge Mode Coupling within a Plasmonic Nanoparticle , 2016, Nano letters.
[49] Michael Isaacson,et al. Surface plasmon excitation of objects with arbitrary shape and dielectric constant , 1989 .
[50] O. N. Kirillov,et al. Coupling of eigenvalues of complex matrices at diabolic and exceptional points , 2005 .
[51] P. Berini,et al. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points , 2017, Nature Communications.
[52] A Chaudhuri,et al. First Penning trap mass measurements beyond the proton drip line. , 2008, Physical review letters.