Thermal, rheological and microstructural characterisation of commercial biodegradable polyesters

Abstract Growing environmental concerns along with new regulations are forcing industries to seek renewable raw materials for their products. This work studies the thermo-rheological properties of commercial biodegradable polyesters: two polylactic acids (PLAs), a polycaprolactone (PCL) and a PLA/PCL blend. Comprehensive material characterization by means of thermogravimetry/differential thermal analysis (TG/DTA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), frequency sweep tests and polarized light microscopy was carried out. The results have shown that the material thermal/thermo-rheological properties and, therefore, its microstructure, are strongly dependent on its thermal history. This fact arises from the slow recrystallization kinetics shown by PLA. Interestingly, PCL may play the role of nucleating agent for the PLA crystallization, making it faster. This issue must be carefully considered so that a reliable material characterization is achieved.

[1]  Sergio Bocchini,et al.  Crystallization kinetics of poly(lactic acid)-talc composites , 2011 .

[2]  C. Migliaresi,et al.  Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights : effect of thermal treatments , 1991 .

[3]  A. Galeski,et al.  Crystalline and supermolecular structure of polylactide in relation to the crystallization method , 2002 .

[4]  E. S. Lipinsky,et al.  Is lactic acid a commodity chemical , 1986 .

[5]  A. G. Pedroso,et al.  Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends , 2005 .

[6]  M. Scandola,et al.  Thermal properties and physical ageing of poly (l-lactic acid) , 1992 .

[7]  Kazuya Okubo,et al.  How to improve mechanical properties of polylactic acid with bamboo fibers , 2008 .

[8]  J. Ferry Viscoelastic properties of polymers , 1961 .

[9]  J. Vermant,et al.  Rheo-physical and imaging techniques , 2010 .

[10]  Lijia An,et al.  Crystallization behavior of PCL in hybrid confined environment , 2001 .

[11]  Wei Yang,et al.  Thermal and mechanical properties of chemical crosslinked polylactide (PLA) , 2008 .

[12]  J. Kolstad Crystallization kinetics of poly(L‐lactide‐co‐meso‐lactide) , 1996 .

[13]  Donald Garlotta,et al.  A Literature Review of Poly(Lactic Acid) , 2001 .

[14]  Hsin‐Lung Chen,et al.  Spherulitic crystallization behavior of Poly(ε-caprolactone) with a wide range of molecular weight , 1997 .

[15]  E. Amis,et al.  LCST phase separation in biodegradable polymer blends : poly(D, L-lactide) and poly(ε-caprolactone) , 2000 .

[16]  H. Yano,et al.  The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites , 2009 .

[17]  M. Imai,et al.  Chain conformation in the induction period of crystallization of poly(ethylene terephthalate) , 1995 .

[18]  Kristiina Oksman,et al.  Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC) , 2005 .

[19]  Chong Lu,et al.  Comparison of the effects of commercial nucleation agents on the crystallization and melting behaviour of polylactide , 2013 .

[20]  M. Todo,et al.  Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends , 2011 .

[21]  J. Aburto,et al.  Mechanical properties and biodegradability of LDPE blends with fatty-acid esters of amylose and starch , 1999 .

[22]  K. Arakawa,et al.  Effect of crystallinity and loading-rate on mode I fracture behavior of poly(lactic acid) , 2006 .

[23]  Rathin Datta,et al.  Lactic acid: recent advances in products, processes and technologies — a review , 2006 .

[24]  N. Mohri,et al.  Dynamic mechanical properties of solution-cast poly(l-lactide) films , 2002 .

[25]  P. Dubois,et al.  Single crystals morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers , 2011 .

[26]  X. Sun,et al.  Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate† , 2003 .

[27]  M. Skrifvars,et al.  Natural fibres as reinforcement in polylactic acid (PLA) composites , 2003 .

[28]  C. Gallegos,et al.  Development of highly-transparent protein/starch-based bioplastics. , 2010, Bioresource technology.

[29]  M. Lanza,et al.  DSC and DMTA study of annealed cold-drawn PET: a three phase model interpretation , 2003 .

[30]  M. Huneault,et al.  Effect of nucleation and plasticization on the crystallization of poly(lactic acid) , 2007 .

[31]  A. Sorrentino,et al.  Crystallization kinetics of virgin and processed poly(lactic acid) , 2010 .

[32]  E. Woo,et al.  Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid) , 2011 .

[33]  Ramiro Dell'Erba,et al.  Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL blends , 2001 .