Stability and quasi-equidistant propagation of NLS soliton trains

Abstract Using the complex Toda chain we model the asymptotic behavior of the N soliton pulse trains of the nonlinear Schrodinger equation. Stable asymptotic regimes are: (i) asymptotically free propagation of all N solitons; (ii) bound state regime where the N solitons may move quasi-equidistantly (QED); and (iii) various intermediate regimes. Our method allows one to determine analytically the set of initial soliton parameters corresponding to each regime. We list the soliton parameters, which ensure QED propagation of all N solitons since this is important for optical fiber communication.

[1]  Kaup Dj,et al.  Second-order perturbations for solitons in optical fibers , 1991 .

[2]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[3]  E. G. Evstatiev,et al.  NONLINEAR SCHRODINGER EQUATION AND N-SOLITON INTERACTIONS : GENERALIZED KARPMAN-SOLOV'EV APPROACH AND THE COMPLEX TODA CHAIN , 1997 .

[4]  Kaup,et al.  Asymptotic Behavior of N-Soliton Trains of the Nonlinear Schrödinger Equation. , 1996, Physical review letters.

[5]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[6]  N. Edagawa,et al.  Feasibility demonstration of 20 Gbit/s single channel soliton transmission over 11500 km using alternating-amplitude solitons , 1994 .

[7]  Yuri S. Kivshar,et al.  Dynamics of Solitons in Nearly Integrable Systems , 1989 .

[8]  Yuji Kodama,et al.  Control of Optical Soliton Interactions , 1995 .

[9]  Lederer,et al.  Soliton interaction near the zero-dispersion wavelength. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  J. Moser,et al.  Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .

[11]  Toda hierarchy with indefinite metric , 1995, solv-int/9505004.

[12]  Kaup Dj,et al.  Perturbation theory for solitons in optical fibers. , 1990 .

[13]  Potsdam,et al.  Criterion and Regions of Stability for Quasi-Equidistant Soliton Trains. , 1997, solv-int/9708004.

[14]  A. Aceves,et al.  Higher-order effects in bandwidth-limited soliton propagation in optical fibers. , 1994, Optics letters.

[15]  V. Karpman,et al.  A perturbational approach to the two-soliton systems , 1981 .

[16]  Ivan M. Uzunov,et al.  On the description of N-soliton interaction in optical fibers , 1996 .

[17]  R. Sasaki,et al.  Instability of Solitons in Imaginary Coupling Affine toda Field Theory , 1995, hep-th/9507001.

[18]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[19]  Hasegawa,et al.  Analyses of soliton interactions by means of a perturbed inverse-scattering transform. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  I M Uzunov,et al.  N-soliton interaction in trains of unequal soliton pulses in optical fibers. , 1992, Optics letters.

[21]  Lev A. Ostrovsky,et al.  Interactions of solitons in nonintegrable systems: Direct perturbation method and applications , 1981 .

[22]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .