Probabilistic declarative information extraction
暂无分享,去创建一个
Daisy Zhe Wang | Joseph M. Hellerstein | Minos N. Garofalakis | Michael J. Franklin | Eirinaios Michelakis | J. Hellerstein | M. Franklin | M. Garofalakis | D. Wang | E. Michelakis
[1] Andrew McCallum,et al. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.
[2] Rahul Gupta,et al. Creating probabilistic databases from information extraction models , 2006, VLDB.
[3] Samuel Madden,et al. MauveDB: supporting model-based user views in database systems , 2006, SIGMOD Conference.
[4] Raghu Ramakrishnan,et al. Community Information Management , 2006, IEEE Data Eng. Bull..
[5] Jennifer Widom,et al. ULDBs: databases with uncertainty and lineage , 2006, VLDB.
[6] Dan Suciu,et al. Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.
[7] Jeffrey F. Naughton,et al. Declarative Information Extraction Using Datalog with Embedded Extraction Predicates , 2007, VLDB.
[8] Prithviraj Sen,et al. Representing and Querying Correlated Tuples in Probabilistic Databases , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[9] Andrew McCallum,et al. An Introduction to Conditional Random Fields for Relational Learning , 2007 .
[10] Daisy Zhe Wang,et al. BayesStore: managing large, uncertain data repositories with probabilistic graphical models , 2008, Proc. VLDB Endow..
[11] Dan Olteanu,et al. Fast and Simple Relational Processing of Uncertain Data , 2007, 2008 IEEE 24th International Conference on Data Engineering.
[12] Frederick Reiss,et al. An Algebraic Approach to Rule-Based Information Extraction , 2008, 2008 IEEE 24th International Conference on Data Engineering.
[13] Jr. G. Forney,et al. Viterbi Algorithm , 1973, Encyclopedia of Machine Learning.
[14] Andrew McCallum,et al. An Introduction to Conditional Random Fields , 2010, Found. Trends Mach. Learn..