Tensor Product Structure of Affine Demazure Modules and Limit Constructions

Abstract Let g be a simple complex Lie algebra, we denote by ĝ the affine Kac-Moody algebra associated to the extended Dynkin diagram of g. Let Λ0 be the fundamental weight of ĝ corresponding to the additional node of the extended Dynkin diagram. For a dominant integral g-coweight λ∨, the Demazure submodule V_λ∨ (mΛ0) is a g-module. We provide a description of the g-module structure as a tensor product of “smaller” Demazure modules. More precisely, for any partition of λ∨ = λ∑j as a sum of dominant integral g-coweights, the Demazure module is (as g-module) isomorphic to ⊗j V_ (mΛ0). For the “smallest” case, λ∨ = ω∨ a fundamental coweight, we provide for g of classical type a decomposition of V_ω∨(mΛ0) into irreducible g-modules, so this can be viewed as a natural generalization of the decomposition formulas in [13] and [16]. A comparison with the Uq (g)-characters of certain finite dimensional -modules (Kirillov-Reshetikhin-modules) suggests furthermore that all quantized Demazure modules V_λ∨,q(mΛ0) can be naturally endowed with the structure of a -module. We prove, in the classical case (and for a lot of non-classical cases), a conjecture by Kashiwara [10], that the “smallest” Demazure modules are, when viewed as g-modules, isomorphic to some KR-modules. For an integral dominant ĝ-weight Λ let V(Λ) be the corresponding irreducible ĝ-representation. Using the tensor product decomposition for Demazure modules, we give a description of the g-module structure of V(Λ) as a semi-infinite tensor product of finite dimensional g-modules. The case of twisted affine Kac-Moody algebras can be treated in the same way, some details are worked out in the last section.

[1]  G. Fourier,et al.  Weyl modules, affine Demazure modules, fusion products and limit constructions , 2005 .

[2]  S. Naito,et al.  Construction of Perfect Crystals Conjecturally Corresponding to Kirillov-Reshetikhin Modules over Twisted Quantum Affine Algebras , 2005, math/0503287.

[3]  M. Kashiwara Level Zero Fundamental Representations over Quantized Affine Algebras and Demazure Modules , 2003, math/0309142.

[4]  P. Magyar Littelmann paths for the basic representation of an affine Lie algebra , 2003, math/0308156.

[5]  Shrawan Kumar,et al.  Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .

[6]  Jin Hong,et al.  Introduction to Quantum Groups and Crystal Bases , 2002 .

[7]  Masato Okado,et al.  Paths, crystals and fermionic formulae , 2001 .

[8]  M. Kashiwara On level-zero representation of quantized affine algebras , 2000, math/0010293.

[9]  Vyjayanthi Chari On the fermionic formula and the Kirillov-Reshetikhin conjecture , 2000, math/0006090.

[10]  S. Yamane Perfect Crystals ofUq(G(1)2) , 1998 .

[11]  G. Hatayama,et al.  Character formulae of sl̂n-modules and inhomogeneous paths , 1998, math/9802085.

[12]  Sigenori Yamane Perfect Crystals of $U_q(G_2^{(1)})$ , 1997, q-alg/9712012.

[13]  K. Misra,et al.  Crystals for Demazure Modules of Classical Affine Lie Algebras , 1997 .

[14]  M. Kleber Combinatorial Structure of Finite Dimensional Representations of Yangians: the Simply-Laced Case , 1996, q-alg/9611032.

[15]  Yasmine B. Sanderson Real Characters for Demazure Modules of Rank Two Affine Lie Algebras , 1996 .

[16]  K. Misra,et al.  Demazure Modules and Perfect Crystals , 1996, q-alg/9607011.

[17]  P. Littelmann On Spherical Double Cones , 1994 .

[18]  Shrawan Kumar Demazure character formula in arbitrary Kac-Moody setting , 1987 .

[19]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[20]  S. Naito,et al.  Crystal of Lakshmibai-Seshadri paths associated to an integral weight of level zero for an affine Lie algebra , 2005 .

[21]  Basic Theory,et al.  Kac-Moody Groups , 2002 .

[22]  O. Mathieu Formules de caractères pour les algèbres de Kac-Moody générales , 1988 .