The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins

A central ubiquitin ligase involved in endoplasmic reticulum (ER)–associated protein degradation is the HRD-ligase. The ER-luminal subunit Hrd3 cooperates with the cochaperone Scj1 in clearing misfolded proteins from the ER.

[1]  Pedro Carvalho,et al.  ER-associated degradation: Protein quality control and beyond , 2014, The Journal of cell biology.

[2]  Thomas Sommer,et al.  Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane , 2013, Nature Cell Biology.

[3]  J. Hoseki,et al.  Glycosylation-independent ERAD pathway serves as a backup system under ER stress , 2013, Molecular biology of the cell.

[4]  M. Schuldiner,et al.  The Role of Djp1 in Import of the Mitochondrial Protein Mim1 Demonstrates Specificity between a Cochaperone and Its Substrate Protein , 2013, Molecular and Cellular Biology.

[5]  A. Ciechanover,et al.  Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. , 2013, Molecular cell.

[6]  Rodrigo Lopez,et al.  Analysis Tool Web Services from the EMBL-EBI , 2013, Nucleic Acids Res..

[7]  Billy Tsai,et al.  The ERdj5-Sel1L complex facilitates cholera toxin retrotranslocation , 2013, Molecular biology of the cell.

[8]  J. Brodsky Cleaning Up: ER-Associated Degradation to the Rescue , 2012, Cell.

[9]  T. Rapoport,et al.  Mechanisms of Sec61/SecY-mediated protein translocation across membranes. , 2012, Annual review of biophysics.

[10]  S. Nishikawa,et al.  Yos9p and Hrd1p mediate ER retention of misfolded proteins for ER-associated degradation , 2012, Molecular biology of the cell.

[11]  Pedro Carvalho,et al.  A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. , 2011, Molecular cell.

[12]  H. Kampinga,et al.  The HSP70 chaperone machinery: J proteins as drivers of functional specificity , 2010, Nature Reviews Molecular Cell Biology.

[13]  J. Brodsky,et al.  The Endoplasmic Reticulum–associated Degradation of the Epithelial Sodium Channel Requires a Unique Complement of Molecular Chaperones , 2010, Molecular biology of the cell.

[14]  Thomas Sommer,et al.  Usa1 functions as a scaffold of the HRD-ubiquitin ligase. , 2009, Molecular cell.

[15]  Daniel Schulz,et al.  Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. , 2009, Molecular cell.

[16]  T. Sommer,et al.  The ubiquitylation machinery of the endoplasmic reticulum , 2009, Nature.

[17]  J. Weissman,et al.  Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. , 2008, Molecular cell.

[18]  J. Hoseki,et al.  ERdj5 Is Required as a Disulfide Reductase for Degradation of Misfolded Proteins in the ER , 2008, Science.

[19]  Yan Xu,et al.  ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. , 2008, Molecular biology of the cell.

[20]  Helmut E. Meyer,et al.  Cooperation of translocase complexes in mitochondrial protein import , 2007, The Journal of cell biology.

[21]  J. Gulbis,et al.  Mitochondrial protein-import machinery: correlating structure with function. , 2007, Trends in cell biology.

[22]  Jason C. Young,et al.  Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import. , 2007, Molecular biology of the cell.

[23]  P. Schultz,et al.  An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae. , 2007, Journal of molecular biology.

[24]  A. Robinson,et al.  The Saccharomyces cerevisiae YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum. , 2007, Biochimica et biophysica acta.

[25]  Johannes Söding,et al.  TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences , 2007, BMC Bioinformatics.

[26]  Thomas Sommer,et al.  A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery , 2006, Nature Cell Biology.

[27]  Jonathan S. Weissman,et al.  A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation , 2006, Cell.

[28]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[29]  T. Sommer,et al.  The Hrd1p ligase complex forms a linchpin between ER‐lumenal substrate selection and Cdc48p recruitment , 2006, The EMBO journal.

[30]  A. Buchberger,et al.  Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation , 2005, Nature Cell Biology.

[31]  T. Sommer,et al.  Ubx2 links the Cdc48 complex to ER-associated protein degradation , 2005, Nature Cell Biology.

[32]  Eric D. Spear,et al.  Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation , 2005, The Journal of cell biology.

[33]  T. Sommer,et al.  Vpu-mediated degradation of CD4 reconstituted in yeast reveals mechanistic differences to cellular ER-associated protein degradation. , 2004, Molecular cell.

[34]  D. Ng,et al.  Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control , 2004, The Journal of cell biology.

[35]  I. Biunno,et al.  Identification of a region within SEL1L protein required for tumour growth inhibition. , 2004, Gene.

[36]  Lynne Regan,et al.  TPR proteins: the versatile helix. , 2003, Trends in biochemical sciences.

[37]  R. Hitt,et al.  Use of Modular Substrates Demonstrates Mechanistic Diversity and Reveals Differences in Chaperone Requirement of ERAD* , 2003, Journal of Biological Chemistry.

[38]  Nicholas J. Hoogenraad,et al.  Molecular Chaperones Hsp90 and Hsp70 Deliver Preproteins to the Mitochondrial Import Receptor Tom70 , 2003, Cell.

[39]  J. Brodsky,et al.  Molecular Chaperones in the Yeast Endoplasmic Reticulum Maintain the Solubility of Proteins for Retrotranslocation and Degradation , 2001, The Journal of cell biology.

[40]  Christine Kim,et al.  Endoplasmic Reticulum Degradation Requires Lumen to Cytosol Signaling , 2000, The Journal of cell biology.

[41]  K. Siegers,et al.  Epitope tagging of yeast genes using a PCR‐based strategy: more tags and improved practical routines , 1999, Yeast.

[42]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[43]  T. Biederer,et al.  Role of Cue1p in ubiquitination and degradation at the ER surface. , 1997, Science.

[44]  J. Rine,et al.  Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. , 1996, Molecular biology of the cell.

[45]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[46]  P. Mittl,et al.  Sel1-like repeat proteins in signal transduction. , 2007, Cellular signalling.

[47]  C. Joazeiro,et al.  Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation , 2000, Nature Cell Biology.

[48]  Peer Bork,et al.  SMART: identification and annotation of domains from signalling and extracellular protein sequences , 1999, Nucleic Acids Res..