Nontrivial solutions on a kind of fourth-order Neumann boundary value problems

Abstract Nontrivial solutions for the fourth-order Neumann boundary value problem u (4) ( t ) − 2 u ″( t ) +  u ( t ) =  f ( t , u ( t )) for all t  ∈ (0, 1) and subject to u ′(0) =  u ′(1) =  u ‴(0) =  u ‴(1) = 0 are obtained via Morse theory. To compute the critical groups at infinity of the relevant functional, we propose an approach by combining the homotopy and reduction methods.

[1]  Kanishka Perera,et al.  Computation of critical groups in elliptic boundary-value problems where the asymptotic limits may not exist , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  John M. Davis,et al.  General Lidstone problems : Multiplicity and symmetry of solutions , 2000 .

[3]  John R. Graef,et al.  Multiple symmetric positive solutions of a class of boundary value problems for higher order ordinary differential equations , 2002 .

[4]  Amnuay Kananthai,et al.  Existence of solutions for some higher order boundary value problems , 2007 .

[5]  Thomas Bartsch,et al.  Critical point theory for asymptotically quadratic functionals and applications to problems with resonance , 1997 .

[6]  Guodong Han,et al.  Multiple solutions of some nonlinear fourth-order beam equations , 2008 .

[7]  Herbert Amann,et al.  Saddle points and multiple solutions of differential equations , 1979 .

[8]  Qingliu Yao,et al.  Positive solutions for Eigenvalue problems of fourth-order elastic beam equations , 2004, Appl. Math. Lett..

[9]  Castro B. Alfonso Reduction methods via minimax , 1982 .

[10]  Yang Yang,et al.  Nontrivial solutions for some fourth order boundary value problems with parameters , 2009 .

[11]  M. S. Berger,et al.  Infinite Dimensional Morse Theory and Multiple Solution Problems (K. C. Chang) , 1994, SIAM Rev..

[12]  Shibo Liu,et al.  CRITICAL GROUPS AT INFINITY, SADDLE POINT REDUCTION AND ELLIPTIC RESONANT PROBLEMS , 2003 .

[13]  Kuang-Chao Chang In nite Dimensional Morse Theory and Multiple Solution Problems , 1992 .

[14]  Fuyi Li,et al.  Sign-changing solutions on a kind of fourth-order Neumann boundary value problem , 2008 .

[15]  Yang Yang,et al.  Existence of solutions for some fourth-order boundary value problems with parameters , 2008 .

[16]  John M. Davis,et al.  Triple positive solutions and dependence on higher order derivatives , 1999 .

[17]  Wan-Tong Li,et al.  Existence and multiplicity of solutions for fourth-order boundary value problems with parameters , 2007 .

[18]  Fuyi Li,et al.  Existence and multiplicity of solutions of a kind of fourth-order boundary value problem , 2005 .

[19]  Zhanbing Bai,et al.  The Method of Lower and Upper Solutions for a Bending of an Elastic Beam Equation , 2000 .

[20]  Fuyi Li,et al.  Multiple solutions of some fourth-order boundary value problems , 2007 .

[21]  Zhanbing Bai,et al.  On positive solutions of some nonlinear fourth-order beam equations , 2002 .

[22]  Fuyi Li,et al.  Existence and multiplicity of solutions to 2mth-order ordinary differential equations , 2007 .

[23]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[24]  Yongxiang Li,et al.  Positive solutions of fourth-order periodic boundary value problems☆ , 2003 .

[25]  Zhang Jihui,et al.  The Method of Lower and Upper Solutions for Fourth-Order Two-Point Boundary Value Problems , 1997 .

[26]  Shibo Liu Nontrivial solutions for elliptic resonant problems , 2009 .

[27]  Fuyi Li,et al.  Existence of solutions to nonlinear Hammerstein integral equations and applications , 2006 .