Stochastic differential equation approach to understanding the population control bias in full configuration interaction quantum Monte Carlo

We investigate a systematic statistical bias found in full configuration quantum Monte Carlo (FCIQMC) that originates from controlling a walker population with a fluctuating shift parameter. This bias can become the dominant error when the sign problem is absent, e.g. in bosonic systems. FCIQMC is a powerful statistical method for obtaining information about the ground state of a sparse and abstract matrix. We show that, when the sign problem is absent, the shift estimator has the nice property of providing an upper bound for the exact ground state energy and all projected energy estimators, while a variational estimator is still an upper bound to the exact energy with substantially reduced bias. A scalar model of the general FCIQMC population dynamics leads to an exactly solvable Itô stochastic differential equation. It provides further insights into the nature of the bias and gives accurate analytical predictions for delayed cross-covariance and auto-covariance functions of the shift energy estimator and the walker number. The model provides a toe-hold on finding a cure for the population control bias. We provide evidence for non-universal power-law scaling of the population control bias with walker number in the Bose-Hubbard model for various estimators of the ground state energy based on the shift or on projected energies. For the specific case of the non-interacting Bose-Hubbard Hamiltonian we obtain a full analytical prediction for the bias of the shift energy estimator.

[1]  J. Brand,et al.  Polaron-Depleton Transition in the Yrast Excitations of a One-Dimensional Bose Gas with a Mobile Impurity , 2021, Condensed Matter.

[2]  K. Ghanem,et al.  Population control bias and importance sampling in full configuration interaction quantum Monte Carlo , 2021, 2102.11016.

[3]  Sai Kumar Ramadugu,et al.  The Sign Problem in Density Matrix Quantum Monte Carlo , 2021, Journal of chemical theory and computation.

[4]  A. Alavi,et al.  Signatures of the BCS-BEC crossover in the yrast spectra of Fermi quantum rings , 2020, 2011.14538.

[5]  K. Ghanem,et al.  The adaptive shift method in full configuration interaction quantum Monte Carlo: Development and applications. , 2020, The Journal of chemical physics.

[6]  J. Brand,et al.  Improved walker population control for full configuration interaction quantum Monte Carlo. , 2020, The Journal of chemical physics.

[7]  Timothy C. Berkelbach,et al.  Improved Fast Randomized Iteration Approach to Full Configuration Interaction. , 2020, Journal of chemical theory and computation.

[8]  A. Alavi,et al.  Eliminating the wave-function singularity for ultracold atoms by a similarity transformation , 2020, 2002.05987.

[9]  Fredrik Bagge Carlson MonteCarloMeasurements.jl: Nonlinear Propagation of Arbitrary Multivariate Distributions by means of Method Overloading , 2020, ArXiv.

[10]  Ali Alavi,et al.  Unbiasing the initiator approximation in full configuration interaction quantum Monte Carlo. , 2019, The Journal of chemical physics.

[11]  N. Blunt A hybrid approach to extending selected configuration interaction and full configuration interaction quantum Monte Carlo. , 2019, The Journal of chemical physics.

[12]  Robert J. Webber,et al.  Beyond Walkers in Stochastic Quantum Chemistry: Reducing Error using Fast Randomized Iteration. , 2019, Journal of chemical theory and computation.

[13]  Piotr Piecuch,et al.  Communication: Approaching exact quantum chemistry by cluster analysis of full configuration interaction quantum Monte Carlo wave functions. , 2018, The Journal of chemical physics.

[14]  M. Jonsson Standard error estimation by an automated blocking method , 2018, Physical Review E.

[15]  E. M. Inack,et al.  Projective quantum Monte Carlo simulations guided by unrestricted neural network states , 2018, Physical Review B.

[16]  N. S. Blunt,et al.  Communication: An efficient and accurate perturbative correction to initiator full configuration interaction quantum Monte Carlo. , 2018, The Journal of chemical physics.

[17]  E. M. Inack,et al.  Understanding Quantum Tunneling using Diffusion Monte Carlo Simulations , 2017, 1711.08027.

[18]  Jonathan Weare,et al.  Fast Randomized Iteration: Diffusion Monte Carlo through the Lens of Numerical Linear Algebra , 2015, SIAM Rev..

[19]  Martin Head-Gordon,et al.  A deterministic alternative to the full configuration interaction quantum Monte Carlo method. , 2016, The Journal of chemical physics.

[20]  N. S. Blunt,et al.  Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas. , 2016, Physical review letters.

[21]  C J Umrigar,et al.  Efficient Heat-Bath Sampling in Fock Space. , 2015, Journal of chemical theory and computation.

[22]  M. Troyer,et al.  Topological origin of the fermion sign problem , 2014, 1410.8535.

[23]  C J Umrigar,et al.  Observations on variational and projector Monte Carlo methods. , 2015, The Journal of chemical physics.

[24]  Ali Alavi,et al.  Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application. , 2015, The Journal of chemical physics.

[25]  W. A. Vigor,et al.  Minimising biases in full configuration interaction quantum Monte Carlo. , 2014, The Journal of chemical physics.

[26]  Ali Alavi,et al.  Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo. , 2014, The Journal of chemical physics.

[27]  Gustavo E. Scuseria,et al.  Sign problem in full configuration interaction quantum Monte Carlo: Linear and sublinear representation regimes for the exact wave function , 2014, 1407.4800.

[28]  J. S. Spencer,et al.  The effect of quantization on the full configuration interaction quantum Monte Carlo sign problem. , 2012, The Journal of chemical physics.

[29]  Ali Alavi,et al.  Towards an exact description of electronic wavefunctions in real solids , 2012, Nature.

[30]  Ali Alavi,et al.  Taming the First-Row Diatomics: A Full Configuration Interaction Quantum Monte Carlo Study. , 2012, Journal of chemical theory and computation.

[31]  M. Boninsegni,et al.  Population size bias in diffusion Monte Carlo. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  C J Umrigar,et al.  Semistochastic projector Monte Carlo method. , 2012, Physical review letters.

[33]  R. Fazio,et al.  Phase diagram of the extended Bose–Hubbard model , 2012, 1204.5964.

[34]  N. S. Blunt,et al.  The sign problem and population dynamics in the full configuration interaction quantum Monte Carlo method. , 2011, The Journal of chemical physics.

[35]  George H. Booth,et al.  Natural Orbitals for Wave Function Based Correlated Calculations Using a Plane Wave Basis Set. , 2011, Journal of chemical theory and computation.

[36]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[37]  Ali Alavi,et al.  Communications: Survival of the fittest: accelerating convergence in full configuration-interaction quantum Monte Carlo. , 2010, The Journal of chemical physics.

[38]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[39]  C. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences , 2009 .

[40]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[41]  C. Umrigar,et al.  Alleviation of the Fermion-sign problem by optimization of many-body wave functions. , 2006, Physical review letters.

[42]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[43]  Immanuel Bloch,et al.  Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .

[44]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[45]  Cerf,et al.  Finite population-size effects in projection Monte Carlo methods. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  C. Umrigar,et al.  A diffusion Monte Carlo algorithm with very small time-step errors , 1993 .

[47]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[48]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[49]  Nightingale,et al.  Monte Carlo calculation of free energy, critical point, and surface critical behavior of three-dimensional Heisenberg ferromagnets. , 1988, Physical review letters.

[50]  Nightingale,et al.  Gap of the linear spin-1 Heisenberg antiferromagnet: A Monte Carlo calculation. , 1986, Physical review. B, Condensed matter.

[51]  J. H. Hetherington,et al.  Observations on the statistical iteration of matrices , 1984 .

[52]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[53]  M. Kalos Energy of a simple triton model , 1969 .

[54]  M. H. Kalos,et al.  Monte Carlo Calculations of the Ground State of Three- and Four-Body Nuclei , 1962 .