Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization

A number of radio interferometers are currently being planned or constructed to observe 21 cm emission from reionization. Not only will such measurements provide a detailed view of that epoch, but, since the 21 cm emission also traces the distribution of matter in the universe, this signal can be used to constrain cosmological parameters. The sensitivity of an interferometer to the cosmological information in the signal may depend on how precisely the angular dependence of the 21 cm three-dimensional power spectrum can be measured. Using an analytic model for reionization, we quantify all the effects that break the spherical symmetry of the three-dimensional 21 cm power spectrum. We find that upcoming observatories will be sensitive to the 21 cm signal over a wide range of scales, from larger than 100 to as small as 1 comoving Mpc. Next, we consider three methods to measure cosmological parameters from the signal: (1) direct fitting of the density power spectrum to the signal, (2) using only the velocity field fluctuations in the signal, and (3) looking at the signal at large enough scales that all fluctuations trace the density field. With the foremost method, the first generation of 21 cm observations should moderately improve existing constraints on cosmological parameters for certain low-redshift reionization scenarios, and a 2 yr observation with the second-generation interferometer MWA5000 in combination with the CMB telescope Planck could improve constraints on Ω_w, Ω_(m)h^2, Ω_(b)h^2, Ω_ν, n_s, and α_s. If the universe is substantially ionized by z ~ 12 or if spin temperature fluctuations are important, we show that it will be difficult to place competitive constraints on cosmological parameters with any of the considered methods.

[1]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[2]  An excursion set model for the distribution of dark matter and dark matter haloes , 1998, astro-ph/9805319.

[3]  THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT FROM REIONIZATION , 2005, astro-ph/0504189.

[4]  OH S.Peng,et al.  Reionization by Hard Photons. I. X-Rays from the First Star Clusters , 2000, astro-ph/0005262.

[5]  Alexander S. Szalay,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[6]  Photoevaporation of cosmological minihaloes during reionization , 2003, astro-ph/0307266.

[7]  Mark Dragovan,et al.  Interferometric observation of cosmic microwave background anisotropies , 1999 .

[8]  Simulating IGM Reionization , 2003, astro-ph/0301293.

[9]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[10]  Volker Springel,et al.  The history of star formation in a lcdm universe , 2002, astro-ph/0206395.

[11]  J. Shull,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 14/09/00 HEATING AND IONIZATION OF THE INTERGALACTIC MEDIUM , 2001 .

[12]  Zoltan Haiman,et al.  Fossil H ii regions: self-limiting star formation at high redshift , 2003 .

[13]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[14]  Simulating Cosmic Reionization at Large Scales I: the Geometry of Reionization , 2005, astro-ph/0512187.

[15]  Max Tegmark,et al.  Foregrounds and Forecasts for the Cosmic Microwave Background , 2000 .

[16]  Max Tegmark,et al.  Twenty-one centimeter tomography with foregrounds , 2005 .

[17]  Cosmic reionization by stellar sources: population III stars , 2003, astro-ph/0307451.

[18]  Taxing the rich: Recombinations and bubble growth during reionization , 2005, astro-ph/0505065.

[19]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[20]  Robert H. Becker,et al.  Evolution of the ionizing background and the epoch of reionization from the spectra of z ∼ 6 quasars , 2001 .

[21]  Max Tegmark,et al.  21 cm Tomography with Foregrounds , 2006 .

[22]  The Alcock-Paczyński test in redshifted 21-cm maps , 2004, astro-ph/0410420.

[23]  Martin J. Rees,et al.  Radio Signatures of H I at High Redshift: Mapping the End of the “Dark Ages” , 2000 .

[24]  P. Shapiro,et al.  The Impact of Small-Scale Structure on Cosmological Ionization Fronts and Reionization , 2004, astro-ph/0411035.

[25]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.

[26]  Ilian T. Iliev,et al.  On the Direct Detectability of the Cosmic Dark Ages: 21 Centimeter Emission from Minihalos , 2002 .

[27]  S. Bharadwaj,et al.  The cosmic microwave background radiation fluctuations from H i perturbations prior to reionization , 2004 .

[28]  S. Bharadwaj,et al.  The cosmic microwave background radiation fluctuations from H i perturbations prior to reionization , 2004 .

[29]  S. White,et al.  Simulating intergalactic medium reionization , 2003 .

[30]  A. Loeb,et al.  A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.

[31]  M. Zaldarriaga,et al.  Lensing Reconstruction Using Redshifted 21 Centimeter Fluctuations , 2005, astro-ph/0511547.

[32]  Weak Gravitational Lensing of High-Redshift 21 cm Power Spectra , 2005, astro-ph/0512218.

[33]  Nickolay Y. Gnedin,et al.  Redshifted 21 centimeter emission from the pre-reionization era. I. Mean signal and linear fluctuations , 2004 .

[34]  Cosmic reionization by stellar sources: Population II stars , 2003, astro-ph/0303098.

[35]  G. Field An Attempt to Observe Neutral Hydrogen Between the Galaxies. , 1959 .

[36]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation , 1993 .

[37]  Xuelei Chen,et al.  The Spin-Kinetic Temperature Coupling and the Heating Rate due to Lyα Scattering before Reionization: Predictions for 21 Centimeter Emission and Absorption , 2003, astro-ph/0303395.

[38]  IoA,et al.  Radio Foregrounds for the 21 Centimeter Tomography of the Neutral Intergalactic Medium at High Redshifts , 2001, astro-ph/0109241.

[39]  Separating out the Alcock–Paczyński effect on 21-cm fluctuations , 2005, astro-ph/0508341.

[40]  B. Ciardi,et al.  Probing beyond the epoch of hydrogen reionization with 21 centimeter radiation , 2003 .

[41]  Wayne Hu,et al.  Redshift Space 21 cm Power Spectra from Reionization , 2005, astro-ph/0511141.

[42]  Volker Bromm,et al.  Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars , 2001 .

[43]  P. Shapiro,et al.  The effect of minihaloes on cosmic reionization , 2005, astro-ph/0511623.

[44]  M. Zaldarriaga,et al.  The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.

[45]  M. Zaldarriaga,et al.  21 Centimeter Fluctuations from Cosmic Gas at High Redshifts , 2003, astro-ph/0311514.

[46]  C. Carilli,et al.  Science with the Square Kilometer Array , 2004, astro-ph/0409274.

[47]  Matias Zaldarriaga,et al.  Statistical Probes of Reionization with 21 Centimeter Tomography , 2004, astro-ph/0404112.

[48]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[49]  L. Knox,et al.  Multifrequency Analysis of 21 Centimeter Fluctuations from the Era of Reionization , 2005 .

[50]  Characteristic scales during reionization , 2005, astro-ph/0507524.

[51]  Miguel F. Morales POWER SPECTRUM SENSITIVITY AND THE DESIGN OF EPOCH OF REIONIZATION OBSERVATORIES , 2005 .

[52]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[53]  Martin J. Rees,et al.  The 21-cm line at high redshift: a diagnostic for the origin of large scale structure , 1990 .

[54]  Judd D. Bowman,et al.  The Sensitivity of First-Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra , 2005, astro-ph/0507357.

[55]  Abraham Loeb,et al.  Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations , 2004 .