Coherent conversion between optical and microwave photons in Rydberg gases
暂无分享,去创建一个
Quantum information encoded in optical photons can be transmitted over long distances with very high information density, and suffers from negligible thermal noise at room temperature. On the other hand, microwave photons at cryogenic temperatures can be confined in high quality resonators and strongly coupled to solid-state qubits, providing a quantum bus to connect qubits and a route to deterministic photonic non-linearities. The coherent interconversion of microwave and optical photons has therefore recently emerged as a highly desirable capability that would enable freely-scalable networks of optically-linked qubits, or large-scale photonic information processing with multi-photon interactions mediated by microwaves. Here, we propose a route to efficient and coherent microwave-optical conversion based on frequency mixing in Rydberg atoms. The interaction requires no microfabricated components or cavities, and is tunable, broadband, and both spatially and spectrally multimode.