On the microstructural characteristics of non-equilibrium γ precipitates in CuZnAl alloys

[1]  J. Pons,et al.  γ Precipitates in β-CuZnAl: Influence on martensitic transformations , 1989 .

[2]  R. Eadie,et al.  The effect of hydride precipitation on the stresses near the crack tip in a delayed hydride crack in zirconium-2.5% niobium , 1989 .

[3]  C. Auguet,et al.  Effect of γ precipitates on the martensitic transformation of β CuZnAl studied by calorimetry , 1989 .

[4]  A. Khachaturyan,et al.  Theoretical analysis of strain-induced shape changes in cubic precipitates during coarsening , 1988 .

[5]  M. Chandrasekaran,et al.  Modulated microstructures inβ Cu-Zn-Al , 1986 .

[6]  M. Chandrasekaran,et al.  The origin of the incommensurate electron diffraction patterns in γ-brass type precipitates in β CuZnAl alloy☆ , 1984 .

[7]  M. Chandrasekaran,et al.  Precipitates with an incommensurate structure in β‐Cu‐Zn‐Al , 1981 .

[8]  H. Yamauchi,et al.  Elastic interaction of defect clusters with arbitrary strain fields in an anisotropic continuum , 1979 .

[9]  G. Purdy,et al.  Equilibrium properties of the γ-β interface in Cu-Zn alloys , 1975 .

[10]  A. K. Head,et al.  The Influence of Large Elastic Anisotropy on the Determination of Burgers Vectors of Dislocations in β-Brass by Electron Microscopy , 1967 .

[11]  A. Howie,et al.  Electron Microscopy of Thin Crystals , 1977, Nature.

[12]  R. Gevers Dynamical theory of moire fringe patterns , 1962 .

[13]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .