A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel

The aim of this paper is to propose a new formulation of the fractional optimal control problems involving Mittag–Leffler nonsingular kernel. By using the Lagrange multiplier within the calculus of variations and by applying the fractional integration by parts, the necessary optimality conditions are derived in terms of a nonlinear two-point fractional boundary value problem. Based on the convolution formula and generalized discrete Grönwall’s inequality, the numerical scheme for solving this problem is developed and its convergence is proved. Numerical simulations and comparative results show that the suggested technique is efficient and provides satisfactory results.

[1]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[2]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[3]  Delfim F. M. Torres,et al.  A discrete method to solve fractional optimal control problems , 2014, 1403.5060.

[4]  Abdon Atangana,et al.  Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives , 2017, Int. J. Circuit Theory Appl..

[5]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[6]  Eric A. Butcher,et al.  Efficient modified Chebyshev differentiation matrices for fractional differential equations , 2017, Commun. Nonlinear Sci. Numer. Simul..

[7]  José Francisco Gómez-Aguilar,et al.  Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel , 2017 .

[8]  José António Tenreiro Machado,et al.  Extended Algorithms for Approximating Variable Order Fractional Derivatives with Applications , 2017, J. Sci. Comput..

[9]  Fawang Liu,et al.  Unsteady flow of viscoelastic fluid with the fractional K-BKZ model between two parallel plates , 2017 .

[10]  Delfim F. M. Torres,et al.  A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems , 2016, J. Optim. Theory Appl..

[11]  Fawang Liu,et al.  Unsteady Marangoni convection heat transfer of fractional Maxwell fluid with Cattaneo heat flux , 2017 .

[12]  Dumitru Baleanu,et al.  Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel , 2016, 1607.00262.

[13]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[14]  José António Tenreiro Machado,et al.  A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations , 2017, Comput. Math. Appl..

[15]  Seyed Mohammad Hosseini,et al.  A Pseudospectral Method for Fractional Optimal Control Problems , 2017, J. Optim. Theory Appl..

[16]  H. Srivastava,et al.  Local Fractional Integral Transforms and Their Applications , 2015 .

[17]  J. A. Tenreiro Machado,et al.  New Trends in Nanotechnology and Fractional Calculus Applications , 2010 .

[18]  O. Agrawal A Quadratic Numerical Scheme for Fractional Optimal Control Problems , 2008 .

[19]  Siddhartha Sen,et al.  Free final time fractional optimal control problems , 2014, J. Frankl. Inst..

[20]  Dumitru Baleanu,et al.  Solving fractional optimal control problems within a Chebyshev–Legendre operational technique , 2017, Int. J. Control.

[21]  Juan J. Trujillo,et al.  Optimal control of discrete-time linear fractional-order systems with multiplicative noise , 2016, Int. J. Control.

[22]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[23]  Dumitru Baleanu,et al.  A Central Difference Numerical Scheme for Fractional Optimal Control Problems , 2008, 0811.4368.

[24]  Dumitru Baleanu,et al.  Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel , 2016 .

[25]  José Francisco Gómez-Aguilar,et al.  Space–time fractional diffusion equation using a derivative with nonsingular and regular kernel , 2017 .

[26]  Behrouz Parsa Moghaddam,et al.  An integro quadratic spline approach for a class of variable-order fractional initial value problems , 2017 .

[27]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[28]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[29]  D. Benson,et al.  Fractional calculus in hydrologic modeling: A numerical perspective. , 2013, Advances in water resources.

[30]  Ali Lotfi,et al.  A Combination of Variational and Penalty Methods for Solving a Class of Fractional Optimal Control Problems , 2017, J. Optim. Theory Appl..

[31]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[32]  Dumitru Baleanu,et al.  A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems , 2017 .

[33]  Tian Liang Guo,et al.  The Necessary Conditions of Fractional Optimal Control in the Sense of Caputo , 2012, Journal of Optimization Theory and Applications.

[34]  Fanhai Zeng,et al.  The Finite Difference Methods for Fractional Ordinary Differential Equations , 2013 .

[35]  Dumitru Baleanu,et al.  Conditional Optimization Problems: Fractional Order Case , 2013, J. Optim. Theory Appl..

[36]  Dumitru Baleanu,et al.  Fractional Optimal Control Problems with Several State and Control Variables , 2010 .

[37]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[38]  Devendra Kumar,et al.  An efficient analytical technique for fractional model of vibration equation , 2017 .

[39]  A. Atangana,et al.  New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.