Asymptotics of the partition function of a random matrix model

Nous prouvons de nombreux resultats concernant les comportements asymptotiques de l'energie libre d'un modele matriciel aleatoire a potentiel polynomial. Notre approche est fondee sur la deformation du potentiel et de l'utilisation de la structure integrable sous-jacente du modele. Les principaux resultats incluent l'existence du developpement asymptotique en puissances de N impaires des coefficients de recurrence des polynomes orthogonaux d'un potentiel regulier a une coupe et de la double reduction asymptotique de l'energie libre pour un potentiel quartique singulier. Nous prouvons aussi l'analyticite des coefficients du developpement asymptotique des coefficients de recurrence et de l'energie selon ceux du potentiel libre, ainsi que l'analyticite unilaterale des coefficients et de l'energie libre d'un potentiel singulier a une coupe.

[1]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[2]  Arno B. J. Kuijlaars,et al.  Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields , 2000 .

[3]  A concise expression for the ODE's of orthogonal polynomials , 2001, math-ph/0109018.

[4]  K. Mclaughlin,et al.  Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration , 2002, math-ph/0211022.

[5]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[6]  H. Flaschka On the Toda Lattice. II Inverse-Scattering Solution , 1974 .

[7]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[9]  Double Scaling Limit in Random Matrix Models and a Nonlinear Hierarchy of Differential Equations , 2002, hep-th/0209087.

[10]  Pierre Van Moerbeke Random matrices and permutations, matrix integrals and integrable systems , 2002 .

[11]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[12]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .

[13]  A. S. Fokas,et al.  Matrix models of two-dimensional quantum gravity and isomonodromic solutions of “discrete Painlevé” equations , 1995 .

[14]  Bertrand Eynard,et al.  Breakdown of universality in multi-cut matrix models , 2000 .

[15]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[16]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[17]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[18]  J. Harnad,et al.  Partition functions for matrix models and isomonodromic tau functions , 2003 .

[19]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[20]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[21]  L. Pastur,et al.  On the statistical mechanics approach in the random matrix theory: Integrated density of states , 1995 .

[22]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .