Recovering from missing data in population imaging - Cardiac MR image imputation via conditional generative adversarial nets

[1]  Juerg Schwitter,et al.  Quality assessment of cardiovascular magnetic resonance in the setting of the European CMR registry: description and validation of standardized criteria , 2013, Journal of Cardiovascular Magnetic Resonance.

[2]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[3]  J. Udupa,et al.  An objective comparison of 3-D image interpolation methods , 1998, IEEE Transactions on Medical Imaging.

[4]  Dudley J Pennell,et al.  Cardiovascular magnetic resonance: twenty-first century solutions in cardiology. , 2003, Clinical medicine.

[5]  Alejandro F. Frangi,et al.  Missing Slice Imputation in Population CMR Imaging via Conditional Generative Adversarial Nets , 2019, MICCAI.

[6]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Alejandro F. Frangi,et al.  Quantitative CMR population imaging on 20, 000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation , 2019, Medical Image Anal..

[8]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[9]  Jayaram K. Udupa,et al.  A task-specific evaluation of three-dimensional image interpolation techniques , 1999, IEEE Transactions on Medical Imaging.

[10]  Aníbal R. Figueiras-Vidal,et al.  Pattern classification with missing data: a review , 2010, Neural Computing and Applications.

[11]  Sridhar Mahadevan,et al.  Generative Multi-Adversarial Networks , 2016, ICLR.

[12]  J. Linseisen,et al.  Whole-Body MR Imaging in the German National Cohort: Rationale, Design, and Technical Background. , 2015, Radiology.

[13]  Trung Le,et al.  Dual Discriminator Generative Adversarial Nets , 2017, NIPS.

[14]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[15]  Simon Pezold,et al.  High Order Slice Interpolation for Medical Images , 2017, SASHIMI@MICCAI.

[16]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[17]  E P Walsh,et al.  Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair , 2006, Heart.

[18]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[19]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[20]  P. Matthews,et al.  Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches , 2013, Journal of Cardiovascular Magnetic Resonance.

[21]  Andrea Vedaldi,et al.  Improved Texture Networks: Maximizing Quality and Diversity in Feed-Forward Stylization and Texture Synthesis , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[23]  Raymond Y. K. Lau,et al.  Least Squares Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[24]  P. Matthews,et al.  UK Biobank’s cardiovascular magnetic resonance protocol , 2015, Journal of Cardiovascular Magnetic Resonance.

[25]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[26]  Eric E. Smith,et al.  Rationale, design, and methods for Canadian alliance for healthy hearts and minds cohort study (CAHHM) – a Pan Canadian cohort study , 2016, BMC Public Health.

[27]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[28]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Guoliang Xu,et al.  Medical image interpolation based on multi-resolution registration , 2013, Comput. Math. Appl..

[30]  Thomas Brox,et al.  Generating Images with Perceptual Similarity Metrics based on Deep Networks , 2016, NIPS.

[31]  Xin Yang,et al.  Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? , 2018, IEEE Transactions on Medical Imaging.

[32]  Jonathon Shlens,et al.  A Learned Representation For Artistic Style , 2016, ICLR.

[33]  C. Y. Peng,et al.  Principled missing data methods for researchers , 2013, SpringerPlus.

[34]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[35]  Taesung Park,et al.  Semantic Image Synthesis With Spatially-Adaptive Normalization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Shuo Li,et al.  Spine‐GAN: Semantic segmentation of multiple spinal structures , 2018, Medical Image Anal..

[37]  Aaron Carass,et al.  Unpaired Brain MR-to-CT Synthesis Using a Structure-Constrained CycleGAN , 2018, DLMIA/ML-CDS@MICCAI.

[38]  Ben Glocker,et al.  Learning-Based Quality Control for Cardiac MR Images , 2018, IEEE Transactions on Medical Imaging.

[39]  Han Zhang,et al.  Self-Attention Generative Adversarial Networks , 2018, ICML.

[40]  Takeru Miyato,et al.  cGANs with Projection Discriminator , 2018, ICLR.

[41]  Stefan K. Piechnik,et al.  Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort , 2017, Journal of Cardiovascular Magnetic Resonance.

[42]  Loïc Le Folgoc,et al.  Attention U-Net: Learning Where to Look for the Pancreas , 2018, ArXiv.

[43]  S. Petersen,et al.  Use of Cardiac Magnetic Resonance and Echocardiography in Population-Based Studies: Why, Where, and When? , 2013, Circulation. Cardiovascular imaging.

[44]  Mark J. T. Smith,et al.  A New Method for Registration-Based Medical Image Interpolation , 2008, IEEE Transactions on Medical Imaging.

[45]  Pedro F Ferreira,et al.  Cardiovascular magnetic resonance artefacts , 2013, Journal of Cardiovascular Magnetic Resonance.

[46]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[47]  Xiahai Zhuang,et al.  Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI , 2016, Medical Image Anal..

[48]  Verónica Vilaplana,et al.  Brain MRI super-resolution using 3D generative adversarial networks , 2018, ArXiv.

[49]  P. Bhagirath,et al.  Cardiac magnetic resonance imaging: artefacts for clinicians , 2014, Netherlands Heart Journal.

[50]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Yair Weiss,et al.  On GANs and GMMs , 2018, NeurIPS.

[52]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[53]  Jong Chul Ye,et al.  CollaGAN: Collaborative GAN for Missing Image Data Imputation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[55]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[56]  Noel A. Card,et al.  Best practices for missing data management in counseling psychology. , 2010, Journal of counseling psychology.

[57]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[58]  Ting Chen,et al.  On Self Modulation for Generative Adversarial Networks , 2018, ICLR.

[59]  Alejandro F. Frangi,et al.  Automatic Assessment of Full Left Ventricular Coverage in Cardiac Cine Magnetic Resonance Imaging With Fisher-Discriminative 3-D CNN , 2018, IEEE Transactions on Biomedical Engineering.

[60]  Hugo Larochelle,et al.  Modulating early visual processing by language , 2017, NIPS.