Increased thermal stabilization of polymer photovoltaic cells with oligomeric PCBM

The first oligomerisation of phenyl-C61-butyric acid methyl ester (PCBM) using a facile atom transfer radical addition polymerization (ATRAP) and its exploitation for organic photovoltaic devices is described. Oligo{(phenyl-C61-butyric acid methyl ester)-alt-[1,4-bis(bromomethyl)-2,5-bis(octyloxy)benzene]} (OPCBMMB) shows opto-electronic properties equivalent to those of PCBM but has a higher glass transition temperature. When mixed with various band gap semiconducting polymers, OPCBMMB delivers performances similar to PCBM but with an enhanced stabilization of the bulk heterojunction in photovoltaic devices on plastic substrates under thermal stress, regardless of the degree of crystallinity of the polymer and without changing opto-electronic properties.

[1]  K. Arlauskas,et al.  Sterically controlled azomethine ylide cycloaddition polymerization of phenyl-C61-butyric acid methyl ester. , 2016, Chemical communications.

[2]  Carlos Frederico de Oliveira Graeff,et al.  Synthesis of Main-Chain Poly(fullerene)s from a Sterically Controlled Azomethine Ylide Cycloaddition Polymerization , 2016 .

[3]  Christoph J. Brabec,et al.  Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials , 2016 .

[4]  C. Brabec,et al.  Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability , 2016 .

[5]  C. Brabec,et al.  An Alternative Strategy to Adjust the Recombination Mechanism of Organic Photovoltaics by Implementing Ternary Compounds , 2015 .

[6]  Zhe Li,et al.  Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices , 2015, Scientific Reports.

[7]  I. McCulloch,et al.  Organic photovoltaics: Crosslinking for optimal morphology and stability , 2015 .

[8]  X. Wen,et al.  Effects of blend composition on the morphology of Si‐PCPDTBT:PC71BM bulk heterojunction organic solar cells , 2015 .

[9]  H. Cramail,et al.  Fullerene-capped copolymers for bulk heterojunctions: device stability and efficiency improvements , 2015 .

[10]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[11]  A. Tournebize,et al.  The effect of polymer solubilizing side-chains on solar cell stability. , 2015, Physical chemistry chemical physics : PCCP.

[12]  Frank W. Fecher,et al.  Guidelines for Closing the Efficiency Gap between Hero Solar Cells and Roll‐To‐Roll Printed Modules , 2015 .

[13]  Ifor D. W. Samuel,et al.  The Impact of Driving Force on Electron Transfer Rates in Photovoltaic Donor–Acceptor Blends , 2015, Advanced materials.

[14]  Y. Matsuo,et al.  Increased Efficiency in Small Molecule Organic Solar Cells Through the Use of a 56-π Electron Acceptor – Methano Indene Fullerene , 2015, Scientific Reports.

[15]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[16]  Zhe Li,et al.  Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell** , 2014, Angewandte Chemie.

[17]  Christoph J. Brabec,et al.  Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations , 2014 .

[18]  A. Facchetti,et al.  Thermal Stabilisation of Polymer–Fullerene Bulk Heterojunction Morphology for Efficient Photovoltaic Solar Cells , 2014, Advanced materials.

[19]  Andres Osvet,et al.  Qualitative analysis of bulk-heterojunction solar cells without device fabrication: an elegant and contactless method. , 2014, Journal of the American Chemical Society.

[20]  S. Beaupré,et al.  How Photoinduced Crosslinking Under Operating Conditions Can Reduce PCDTBT‐Based Solar Cell Efficiency and then Stabilize It , 2014 .

[21]  P. M. Kristiansen,et al.  Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends , 2014 .

[22]  O. Inganäs,et al.  Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend , 2014 .

[23]  David G Lidzey,et al.  Morphology Development in Amorphous Polymer:Fullerene Photovoltaic Blend Films During Solution Casting , 2014 .

[24]  Zhe Li,et al.  Morphological stability and performance of polymer-fullerene solar cells under thermal stress: the impact of photoinduced PC60BM oligomerization. , 2014, ACS nano.

[25]  Hans-Joachim Egelhaaf,et al.  The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells , 2014 .

[26]  Ifor D. W. Samuel,et al.  Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells , 2013, Nature Communications.

[27]  N. S. Sariciftci,et al.  Efficiency of bulk-heterojunction organic solar cells , 2013, Progress in polymer science.

[28]  Milos Nesladek,et al.  Influence of fullerene photodimerization on the PCBM crystallization in polymer: Fullerene bulk heterojunctions under thermal stress , 2013 .

[29]  Zhenggang Huang,et al.  Performance enhancement of fullerene-based solar cells by light processing , 2013, Nature Communications.

[30]  Ergang Wang,et al.  Nucleation-limited fullerene crystallisation in a polymer-fullerene bulk-heterojunction blend† , 2013 .

[31]  Scott A. Mauger,et al.  Self‐Assembly of Selective Interfaces in Organic Photovoltaics , 2013 .

[32]  John R. Tumbleston,et al.  The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells , 2013 .

[33]  J. J. Richards,et al.  Modification of PCBM Crystallization via Incorporation of C60 in Polymer/Fullerene Solar Cells , 2013 .

[34]  G. Wantz,et al.  Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. , 2013, Chemical reviews.

[35]  M. Labardi,et al.  Plasticization in Ultrathin Polymer Films: The Role of Supporting Substrate and Annealing , 2013 .

[36]  Won Ho Jo,et al.  Degradation and stability of polymer-based solar cells , 2012 .

[37]  T. Ngo,et al.  Glass transition of PCBM, P3HT and their blends in quenched state , 2012 .

[38]  Agnès Rivaton,et al.  Influence of the microstructure on the photooxidative degradation of poly(3-hexylthiophene) , 2012 .

[39]  Zhi‐Xin Guo,et al.  Dumb-belled PCBM derivative with better photovoltaic performance , 2012 .

[40]  Frank Neese,et al.  The ORCA program system , 2012 .

[41]  Jenny Nelson,et al.  Polymer:fullerene bulk heterojunction solar cells , 2011 .

[42]  Lionel Hirsch,et al.  P3HT:PCBM, Best Seller in Polymer Photovoltaic Research , 2011, Advanced materials.

[43]  P. Topham,et al.  Block copolymer strategies for solar cell technology , 2011 .

[44]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[45]  Paul L. Burn,et al.  A Small Molecule Non‐fullerene Electron Acceptor for Organic Solar Cells , 2011 .

[46]  H. Cramail,et al.  Synthesis of Donor-Acceptor Multiblock Copolymers Incorporating Fullerene Backbone Repeat Units , 2010 .

[47]  Timothy J. Peckham,et al.  Poly(3-hexylthiophene) bearing pendant fullerenes: aggregation vs. self-organization , 2010 .

[48]  Structure and properties of selenious acid doped polyaniline with varied dopant content , 2010 .

[49]  M. Schnell Understanding high-resolution spectra of nonrigid molecules using group theory. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[50]  C. Absalon,et al.  Main-Chain Fullerene Polymers for Photovoltaic Devices , 2009 .

[51]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[52]  Lionel Hirsch,et al.  Field-effect transistors based on poly(3-hexylthiophene): Effect of impurities , 2007 .

[53]  Niyazi Serdar Sariciftci,et al.  Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk‐Heterojunction Solar Cells , 2007 .

[54]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[55]  F. Giacalone,et al.  Fullerene polymers: synthesis and properties. , 2006, Chemical reviews.

[56]  J. Nunzi,et al.  High Molecular Weights, Polydispersities, and Annealing Temperatures in the Optimization of Bulk‐Heterojunction Photovoltaic Cells Based on Poly(3‐hexylthiophene) or Poly(3‐butylthiophene) , 2006 .

[57]  Y. Ishida,et al.  Regio- and diastereo-controlled synthesis of bis (formylmethano ) [60]fullerenes and their application to the formation of [60]fullerene pearl-necklace polyimines , 2006 .

[58]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[59]  A. O. Pozdnyakov,et al.  Thermal degradation in bulk and thin films of 2-, 4-, and 6-arm polystyrene stars with a C60 core , 2006 .

[60]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[61]  R. Nuffer,et al.  Synthesis of di‐ and tetra‐adducts by addition of polystyrene macroradicals onto fullerene C60 , 2004 .

[62]  Charles S. Johnson Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications , 1999 .

[63]  E. Harth,et al.  The repetitive Diels-Alder reaction: A new approach to [60]fullerene main-chain polymers , 1996 .

[64]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[65]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[66]  F. Wudl,et al.  A polyester and polyurethane of diphenyl C61: retention of fulleroid properties in a polymer , 1992 .

[67]  B. Wunderlich,et al.  Specific heat of synthetic high polymers. VIII. Low pressure polyethylene , 1957 .