High-Aspect-Ratio GaN p–i–n Nanowires for Linear UV Photodetectors

[1]  O. Brandt,et al.  A route for the top-down fabrication of ordered ultrathin GaN nanowires , 2022, Nanotechnology.

[2]  E. Monroy,et al.  Assessment of Active Dopants and p-n Junction Abruptness Using In Situ Biased 4D-STEM. , 2022, Nano letters.

[3]  H. Okuno,et al.  The influence of illumination conditions in the measurement of built-in electric field at p–n junctions by 4D-STEM , 2022, Applied Physics Letters.

[4]  Matthew Hartensveld,et al.  Realization of electrically driven AlGaN micropillar array deep-ultraviolet light emitting diodes at 286 nm , 2021, AIP Advances.

[5]  Dunjun Chen,et al.  Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays , 2021, Light, science & applications.

[6]  E. Monroy,et al.  Electron beam induced current microscopy of silicon p–n junctions in a scanning transmission electron microscope , 2021 .

[7]  A. Fontcuberta i Morral,et al.  Doping challenges and pathways to industrial scalability of III–V nanowire arrays , 2021 .

[8]  D. Ji,et al.  60 A/W high voltage GaN avalanche photodiode demonstrating robust avalanche and high gain up to 525 K , 2020 .

[9]  K. Lau,et al.  GaN Single Nanowire p–i–n Diode for High-Temperature Operations , 2020, ACS Applied Electronic Materials.

[10]  E. Monroy,et al.  Correlated and in-situ electrical transmission electron microscopy studies and related membrane-chip fabrication , 2020, Nanotechnology.

[11]  E. Monroy,et al.  Effect of bias on the response of GaN axial p-n junction single-nanowire photodetectors. , 2019, Nano letters.

[12]  Hutomo Suryo Wasisto,et al.  Vertical GaN Nanowires and Nanoscale Light-Emitting-Diode Arrays for Lighting and Sensing Applications , 2019, ACS Applied Nano Materials.

[13]  B. Haas,et al.  Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy. , 2019, Ultramicroscopy.

[14]  E. Monroy,et al.  Effect of the nanowire diameter on the linearity of the response of GaN-based heterostructured nanowire photodetectors , 2018, Nanotechnology.

[15]  François Templier,et al.  Influence of size-reduction on the performances of GaN-based micro-LEDs for display application , 2017 .

[16]  A. Waag,et al.  Nanofabrication of Vertically Aligned 3D GaN Nanowire Arrays with Sub-50 nm Feature Sizes Using Nanosphere Lift-off Lithography , 2017 .

[17]  Cheng-Fu Yang,et al.  Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays , 2017, Materials.

[18]  Ray R. LaPierre,et al.  A review of III–V nanowire infrared photodetectors and sensors , 2017 .

[19]  J. Eymery,et al.  Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires , 2016, ACS applied materials & interfaces.

[20]  Eva Monroy,et al.  Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness , 2016 .

[21]  Ahmed A. Al-Ghamdi,et al.  New concept ultraviolet photodetectors , 2015 .

[22]  Lucia Sorba,et al.  Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods , 2015 .

[23]  Jeremy N. Munday,et al.  The generalized Shockley-Queisser limit for nanostructured solar cells , 2015, Scientific Reports.

[24]  P. Tchoulfian,et al.  Direct imaging of p-n junction in core-shell GaN wires. , 2014, Nano letters.

[25]  Oliver Brandt,et al.  Statistical Analysis of the Shape of One-Dimensional Nanostructures: Determining the Coalescence Degree of Spontaneously Formed GaN Nanowires , 2014, 1402.5252.

[26]  H. Eisele,et al.  Hidden surface states at non-polar GaN (101¯0) facets: Intrinsic pinning of nanowires , 2013 .

[27]  Linfeng Hu,et al.  Low‐Dimensional Nanostructure Ultraviolet Photodetectors , 2013, Advanced materials.

[28]  Meiyong Liao,et al.  A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures , 2013, Sensors.

[29]  Kevin A. Grossklaus,et al.  Misorientation defects in coalesced self-catalyzed GaN nanowires , 2013 .

[30]  J. Eymery,et al.  InGaN/GaN multiple‐quantum well heterostructures for solar cells grown by MOVPE: case studies , 2013 .

[31]  A. Fontcuberta i Morral,et al.  Single-nanowire solar cells beyond the Shockley–Queisser limit , 2013, Nature Photonics.

[32]  E. Monroy,et al.  Room-temperature photodetection dynamics of single GaN nanowires. , 2012, Nano letters.

[33]  V. Consonni,et al.  In situ analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires , 2010, Nanotechnology.

[34]  H. Renevier,et al.  Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy , 2009, Nanotechnology.

[35]  R. Dupuis,et al.  Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates , 2009 .

[36]  J. Bang,et al.  Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography , 2009 .

[37]  Chris G. Van de Walle,et al.  Microscopic origins of surface states on nitride surfaces , 2007 .

[38]  C. L. Cheung,et al.  Fabrication of nanopillars by nanosphere lithography , 2006 .

[39]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[40]  T. Hashizume Effects of Mg accumulation on chemical and electronic properties of Mg-doped p-type GaN surface , 2003 .

[41]  E. Monroy,et al.  Wide-bandgap semiconductor ultraviolet photodetectors , 2003 .

[42]  Pierre Gibart,et al.  High-performance GaN p-n junction photodetectors for solar ultraviolet applications , 1998 .

[43]  Cesare Soci,et al.  Nanowire photodetectors. , 2010, Journal of nanoscience and nanotechnology.