Compact calculation of the perihelion precession of Mercury in general relativity, the cosmological constant and Jacobi's inversion problem

The geodesic equations resulting from the Schwarzschild gravitational metric element are solved exactly including the contribution from the cosmological constant. The exact solution is given by genus-2 Siegelsche modular forms. For zero cosmological constant the hyperelliptic curve degenerates into an elliptic curve and the resulting geodesic is solved by the Weierstras Jacobi modular form. The solution is applied to the precise calculation of the perihelion precession of the orbit of the planet Mercury around the Sun.

[1]  W. Rindler,et al.  Gravitation and Spacetime , 1977 .

[2]  P. Steinhardt,et al.  Cosmology - The cosmic triangle: Revealing the state of the universe , 1999, astro-ph/9906463.

[3]  B. Riemann,et al.  Theorie der Abel'schen Functionen. , 1857 .

[4]  J. Silverman,et al.  Rational Points on Elliptic Curves , 1992 .

[5]  C. Weierstrass,et al.  Zur Theorie der Abelschen Functionen. , 1854 .

[6]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[7]  Higher-order geodesic deviations applied to the Kerr metric , 2002, gr-qc/0205019.

[8]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[9]  T. Damour,et al.  Antisymmetric tensor field interactions and neutron star models , 1994 .

[10]  N. H. Abel Remarques sur quelques propriétés générales d'une certaine sorte de fonctions transcendantes. , 1828 .

[11]  D. Raine General relativity , 1980, Nature.

[12]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[13]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[14]  K. Schwarzschild Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie , 1916 .

[15]  J. Tejeiro,et al.  Can Interplanetary Measures Bound the Cosmological Constant? , 1998 .

[16]  G. V. Kraniotis,et al.  General relativity, the cosmological constant and modular forms , 2001, gr-qc/0105022.

[17]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[18]  G. V. Kraniotis,et al.  Measurement of the Cosmological Constant from Galactic Velocity Rotation Data , 2001 .

[19]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[20]  J. N. Islam The cosmological constant and classical tests of general relativity , 1983 .

[21]  F Scaramuzzi,et al.  Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations. , 2001, Physical review letters.

[22]  Hayes,et al.  Review of particle properties. , 1978, Physical review. D, Particles and fields.

[23]  Relativistic epicycles: another approach to geodesic deviations , 2001, gr-qc/0102099.

[24]  E. Dieh Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie , 2005, Naturwissenschaften.

[25]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[26]  H. Baker Abelian Functions: Abel's Theorem and the Allied Theory of Theta Functions , 2008 .

[27]  K. Gebhardt Astronomy: Into the heart of darkness , 2002, Nature.

[28]  Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation , 2002, hep-th/0204049.

[29]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[30]  Edmund Taylor Whittaker,et al.  A treatise on the analytical dynamics of particles and rigid bodies , 1927 .

[31]  B. Petley New definition of the metre , 1983, Nature.

[32]  C. Jacobi Considerationes generales de transcendentibus Abelianis. , 1832 .

[33]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[34]  M. Roberts,et al.  The orbit of Pluto and the cosmological constant , 1987 .

[35]  Kenneth A. Ribet,et al.  Modular elliptic curves and fermat's last theorem , 1993 .

[36]  Measuring the relativistic perigee advance with satellite laser ranging , 2001, gr-qc/0103088.

[37]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[38]  A. Wiles Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .