Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency.

[1]  Despoina E Kapantaidaki,et al.  Genetic structure of Bemisia tabaci Med populations from home-range countries, inferred by nuclear and cytoplasmic markers: impact on the distribution of the insecticide resistance genes. , 2014, Pest management science.

[2]  M. Ghanim,et al.  Whitefly Special Issue organized in two parts. , 2014, Pest management science.

[3]  J. Vontas,et al.  Activity of flonicamid on the sweet potato whitely Bemisia tabaci (Homoptera: Aleyrodidae) and its natural enemies. , 2014, Pest management science.

[4]  Xiaowei Wang,et al.  Transcriptomic analyses reveal the adaptive features and biological differences of guts from two invasive whitefly species , 2014, BMC Genomics.

[5]  M. Riga,et al.  Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. , 2014, Insect biochemistry and molecular biology.

[6]  N. Prabhaker,et al.  Baseline Susceptibility of Bemisia tabaci B Biotype (Hemiptera: Aleyrodidae) Populations from California and Arizona to Spiromesifen , 2014, Journal of economic entomology.

[7]  Peter Jeschke,et al.  Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. , 2013, Angewandte Chemie.

[8]  W. Xie,et al.  Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance , 2013, Insect molecular biology.

[9]  Jongsun Park,et al.  Taxonomic Status of the Bemisia tabaci Complex (Hemiptera: Aleyrodidae) and Reassessment of the Number of Its Constituent Species , 2013, PloS one.

[10]  Ralf Nauen,et al.  Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. , 2013, Pest management science.

[11]  R. Nauen,et al.  Efficacy of ketoenols on insecticide resistant field populations of two-spotted spider mite Tetranychus urticae and sweet potato whitefly Bemisia tabaci from Greece , 2012 .

[12]  A. Egyir-Yawson,et al.  Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana , 2012, Proceedings of the National Academy of Sciences.

[13]  M. Williamson,et al.  Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisia tabaci , 2011 .

[14]  M. Riga,et al.  Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field‐derived imidacloprid‐resistant insects and cross‐metabolism potential of the recombinant enzyme , 2011 .

[15]  L. Boykin,et al.  Bemisia tabaci: a statement of species status. , 2011, Annual review of entomology.

[16]  Yidong Wu,et al.  Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. , 2010, Pest management science.

[17]  R. Nichols,et al.  Extraordinary Resistance to Insecticides Reveals Exotic Q Biotype of Bemisia tabaci in the New World , 2010, Journal of economic entomology.

[18]  John Vontas,et al.  A Simple Colorimetric Assay for Specific Detection of Glutathione-S Transferase Activity Associated with DDT Resistance in Mosquitoes , 2010, PLoS neglected tropical diseases.

[19]  G. Devine,et al.  Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China , 2010 .

[20]  Chuan-Xi Zhang,et al.  De novo characterization of a whitefly transcriptome and analysis of its gene expression during development , 2010, BMC Genomics.

[21]  R. Nauen,et al.  Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. , 2009, Insect biochemistry and molecular biology.

[22]  S. Morin,et al.  Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) , 2009 .

[23]  R. Nauen,et al.  Applied aspects of neonicotinoid uses in crop protection. , 2008, Pest management science.

[24]  M. Schuler,et al.  Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT , 2008, Proceedings of the National Academy of Sciences.

[25]  R. Nauen,et al.  Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). , 2008, Insect biochemistry and molecular biology.

[26]  T. Perring,et al.  Baseline Susceptibility of Bemisia tabaci B Biotype (Hemiptera: Aleyrodidae) Populations From California and Arizona to Spirotetramat , 2008, Journal of economic entomology.

[27]  D. Heckel,et al.  Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. , 2008, Pest management science.

[28]  M. Morita,et al.  Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. , 2007, Pest management science.

[29]  S. Kontsedalov,et al.  Insecticides with novel modes of action: Mechanism, selectivity and cross‐resistance , 2007 .

[30]  S. Morin,et al.  Resistance to insecticides in the TYLCV vector, Bemisia tabaci , 2007 .

[31]  J. Vontas,et al.  Identification of mutations in the para sodium channel of Bemisia tabaci from Crete, associated with resistance to pyrethroids , 2006 .

[32]  T. Friedberg,et al.  Establishment of functional human cytochrome P450 monooxygenase systems in Escherichia coli. , 2006, Methods in molecular biology.

[33]  S. Morin,et al.  Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). , 2006, Insect biochemistry and molecular biology.

[34]  E. Roditakis,et al.  Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete. , 2005, Pest management science.

[35]  David R. Jones Plant Viruses Transmitted by Whiteflies , 2003, European Journal of Plant Pathology.

[36]  Ralf Nauen,et al.  Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). , 2003, Archives of insect biochemistry and physiology.

[37]  R. Nauen,et al.  Spirodiclofen and Spiromesifen , 2003 .

[38]  Ian Denholm,et al.  Challenges with managing insecticide resistance in agricultural pests, exemplisfied by the whitefly Bemisia tabaci , 1998 .

[39]  T. Shono,et al.  In vitro metabolism of pyriproxyfen by microsomes from susceptible and resistant housefly larvae. , 1998, Archives of insect biochemistry and physiology.

[40]  Isaac Ishaaya,et al.  Insecticides with Novel Modes of Action , 1998, Applied Agriculture.

[41]  I. Ishaaya,et al.  Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera : Aleyrodidae) , 1992 .

[42]  Dan Gerling,et al.  Autecology of Bemisia tabaci , 1986 .

[43]  T. Omura,et al.  THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. , 1964, The Journal of biological chemistry.