Numerical modeling of radiation-dominated and quantum-electrodynamically strong regimes of laser-plasma interaction

Ultra-strong laser pulses can be so intense that an electron in the focused beam loses significant energy due to γ-photon emission while its motion deviates via the radiation back-reaction. Numerical methods and tools designed to simulate radiation-dominated and quantum-electrodynamically strong laser-plasma interactions are summarized here.

[1]  E. N. Nerush,et al.  Laser field absorption in self-generated electron-positron pair plasma. , 2011 .

[2]  G. Mourou,et al.  Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. , 2008, Optics express.

[3]  E. Gerstner Laser physics: Extreme light , 2007, Nature.

[4]  P. Shukla,et al.  Nonlinear collective effects in photon-photon and photon-plasma interactions , 2006, hep-ph/0602123.

[5]  Germany,et al.  Interpreting the transmission windows of distant quasars , 2009, 0902.4071.

[6]  Vladimir T. Tikhonchuk,et al.  Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses , 2009 .

[7]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[8]  Y. Zel’dovich,et al.  Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .

[9]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[10]  G. Mourou,et al.  Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  M Uesaka,et al.  Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma. , 2002, Physical review letters.

[12]  G. Mourou,et al.  Attosecond electron bunches. , 2004, Physical review letters.

[13]  S. Penner Physics of shock waves and high-temperature hydrodynamic phenomena - Ya.B. Zeldovich and Yu.P. Raizer (translated from the Russian and then edited by Wallace D. Hayes and Ronald F. Probstein); Dover Publications, New York, 2002, 944 pp., $34. , 2003 .

[14]  Dieter Walz,et al.  Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses , 1999 .

[15]  Z. Najmudin,et al.  Comparative study of betatron radiation from laser-wakefield and direct-laser accelerated bunches of relativistic electrons , 2009, Optics + Optoelectronics.

[16]  A. Thomas Algorithm for calculating spectral intensity due to charged particles in arbitrary motion , 2009, 0906.0758.

[17]  A. Pukhov,et al.  X-ray generation in strongly nonlinear plasma waves. , 2004, Physical review letters.

[18]  Timur Zh. Esirkepov,et al.  Nonlinear Thomson scattering in the strong radiation damping regime , 2005 .

[19]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[20]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[21]  G. Mourou,et al.  Relativistic generation of isolated attosecond pulses in a lambda 3 focal volume. , 2004, Physical review letters.

[22]  Gerard A. Mourou,et al.  Dynamics of emitting electrons in strong laser fields , 2009, 0904.0405.

[23]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[24]  C. Itzykson,et al.  Pair production in vacuum by an alternating field , 1970 .

[25]  Christoph H. Keitel,et al.  Relativistic high-power laser–matter interactions , 2006 .

[26]  A. Bell,et al.  Possibility of prolific pair production with high-power lasers. , 2008, Physical review letters.

[27]  G. Mourou,et al.  Pair creation in QED-strong pulsed laser fields interacting with electron beams. , 2010, Physical review letters.

[28]  G. Mourou,et al.  Relativistic attosecond physics , 2005 .

[29]  P. Di Matteo,et al.  The simulated 21 cm signal during the epoch of reionization : full modeling of the Ly-α pumping , 2008, 0808.0925.

[30]  C. Labaune,et al.  Hole boring in a DT Pellet and Fast-Ion Ignition with Ultraintense Laser Pulses. , 2009, Physical review letters.

[31]  T. Tajima,et al.  Book Review: Plasma physics via computer simulation. C.K. Birdsall and A.B. Langdon, McGraw-Hill, New York, 1985. xxiii + 479 pages. US $45 , 1986 .

[32]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[33]  James Koga,et al.  Interaction of electromagnetic waves with plasma in the radiation-dominated regime , 2004 .

[34]  A M Fedotov,et al.  Limitations on the attainable intensity of high power lasers. , 2010, Physical review letters.

[35]  I. Sokolov Renormalization of the Lorentz-Abraham-Dirac equation for radiation reaction force in classical electrodynamics , 2009 .

[36]  Y. Lau,et al.  Backscattering of an intense laser beam by an electron. , 2003, Physical review letters.

[37]  Richard Kowalczyk,et al.  Nonlinear Thomson scattering: A tutorial , 2003 .

[38]  Joana Luis Martins,et al.  Radiation post-processing in PIC codes , 2009, Optics + Optoelectronics.

[39]  Antoine Rousse,et al.  Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. , 2004, Physical review letters.