Topology and arrangement computation of semi-algebraic planar curves

We describe a new subdivision method to efficiently compute the topology and the arrangement of implicit planar curves. We emphasize that the output topology and arrangement are guaranteed to be correct. Although we focus on the implicit case, the algorithm can also treat parametric or piecewise linear curves without much additional work and no theoretical difficulties. The method isolates singular points from regular parts and deals with them independently. The topology near singular points is guaranteed through topological degree computation. In either case the topology inside regions is recovered from information on the boundary of a cell of the subdivision. Obtained regions are segmented to provide an efficient insertion operation while dynamically maintaining an arrangement structure. We use enveloping techniques of the polynomial represented in the Bernstein basis to achieve both efficiency and certification. It is finally shown on examples that this algorithm is able to handle curves defined by high degree polynomials with large coefficients, to identify regions of interest and use the resulting structure for either efficient rendering of implicit curves, point localization or boolean operation computation.

[1]  Dietmar Saupe,et al.  Interactive Visualization of Implicit Surfaces with Singularities , 1997, Comput. Graph. Forum.

[2]  Jon G. Rokne,et al.  Scci-hybrid Methods for 2d Curve Tracing , 2005, Int. J. Image Graph..

[3]  Bernard Mourrain,et al.  A Subdivision Arrangement Algorithm for Semi-Algebraic Curves: An Overview , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[4]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[5]  Frank Stenger,et al.  Computing the topological degree of a mapping inRn , 1975 .

[6]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[7]  Zbigniew Szafraniec,et al.  On the number of branches of an 1-dimensional semianalytic set , 1988 .

[8]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[9]  Kenji Aoki,et al.  On the number of branches of a plane curve germ , 1986 .

[10]  Laureano González-Vega,et al.  Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..

[11]  J. Rafael Sendra,et al.  Computation of the topology of real algebraic space curves , 2005, J. Symb. Comput..

[12]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[13]  Jean-Daniel Boissonnat,et al.  Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing , 2004 .

[14]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[15]  Thomas A. Grandine,et al.  A new approach to the surface intersection problem , 1997, Comput. Aided Geom. Des..

[16]  Daniel Cohen-Or,et al.  Special Issue: PG2004 , 2006, Graph. Model..

[17]  Victor J. Milenkovic Calculating approximate curve arrangements using rounded arithmetic , 1989, SCG '89.

[18]  T. Dokken,et al.  Computational Methods for Algebraic Spline Surfaces , 2008 .

[19]  Nicola Wolpert,et al.  Jacobi Curves : Computing the Exact Topology of Arrangements of Non-Singular Algebraic Curves , 2000 .

[20]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[21]  Alicia Dickenstein,et al.  Extremal Real Algebraic Geometry and A-Discriminants , 2006 .

[22]  Kunwoo Lee,et al.  Proceedings of the sixth ACM symposium on Solid modeling and applications , 2001 .

[23]  J. Boissonnat,et al.  Effective Computational Geometry for Curves and Surfaces (Mathematics and Visualization) , 2006 .

[24]  B. Mourrain,et al.  Isotopic meshing of a real algebraic surface , 2006 .

[25]  Gert Vegter,et al.  Isotopic approximation of implicit curves and surfaces , 2004, SGP '04.

[26]  Bernard Mourrain,et al.  Visualisation of Implicit Algebraic Curves , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[27]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[28]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[29]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[30]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[31]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[32]  Bernard Mourrain,et al.  Subdivision methods for solving polynomial equations , 2009, J. Symb. Comput..

[33]  T. Sederberg Algorithm for algebraic curve intersection , 1989 .

[34]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[35]  Irina Voiculescu,et al.  Interval methods in geometric modeling , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[36]  Borut Zalik A Quick Intersection Algorithm for Arbitrary Polygons , 1998 .

[37]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[38]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[39]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[40]  Dinesh Manocha,et al.  Efficient and exact manipulation of algebraic points and curves , 2000, Comput. Aided Des..

[41]  Victor J. Milenkovic,et al.  An Approximate Arrangement Algorithm for Semi-Algebraic Curves , 2007, Int. J. Comput. Geom. Appl..

[42]  Jean-Claude Latombe,et al.  Proceedings of the workshop on Algorithmic foundations of robotics , 1995 .

[43]  Rida T. Farouki,et al.  Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme , 2007, Adv. Comput. Math..

[44]  Jane Schlickau États-Unis d'Amérique , 2010 .

[45]  Dinesh Manocha,et al.  Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, Beijing, China, June 4-6, 2007 , 2007, Symposium on Solid and Physical Modeling.

[46]  Bernard Mourrain,et al.  On the computation of an arrangement of quadrics in 3D , 2005, Comput. Geom..

[47]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[48]  Xiao-Shan Gao,et al.  Determining the Topology of Real Algebraic Surfaces , 2005, IMA Conference on the Mathematics of Surfaces.

[49]  Micha Sharir,et al.  Arrangements and their applications in robotics: recent developments , 1995 .

[50]  Gershon Elber,et al.  Contouring 1- and 2-manifolds in arbitrary dimensions , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[51]  Jürgen Garloff,et al.  Investigation of a subdivision based algorithm for solving systems of polynomial equations , 2001 .

[52]  Iddo Hanniel,et al.  An Exact, Complete and Efficient Computation of Arrangements of BÉzier Curves , 2009, IEEE Transactions on Automation Science and Engineering.

[53]  I. Emiris,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .

[54]  Jean-Daniel Boissonnat,et al.  Effective computational geometry for curves and surfaces , 2006 .

[55]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[56]  Fabrice Rouillier,et al.  Bernstein's basis and real root isolation , 2004 .

[57]  B. Mourrain,et al.  Meshing implicit algebraic surfaces : the smooth case , 2004 .

[58]  Bernard Mourrain,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentation , 2008, Reliable Implementation of Real Number Algorithms.

[59]  Mohamed Elkadi,et al.  Introduction à la résolution des systèmes polynomiaux , 2007 .

[60]  Michael N. Vrahatis,et al.  On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..