Practical Denoising of MEG Data Using Wavelet Transform

Magnetoencephalography (MEG) is an important noninvasive, non-hazardous technology for functional brain mapping, measuring the magnetic fields due to the intracellular neuronal current flow in the brain. However, the inherent level of noise in the data collection process is large enough to obscure the signal(s) of interest most often. In this paper, a practical denoising technique based on the wavelet transform and the multiresolution signal decomposition technique is presented. The proposed technique is substantiated by the application results using three different mother wavelets on the recorded MEG signal.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[3]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[4]  Kevin H. Knuth,et al.  Bayesian source separation and localization , 1998, Optics & Photonics.

[5]  Aapo Hyvärinen,et al.  New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.

[6]  Ole Winther,et al.  Mean-Field Approaches to Independent Component Analysis , 2002, Neural Computation.

[7]  Erkki Oja,et al.  Independent component analysis for artefact separation in astrophysical images , 2003, Neural Networks.

[8]  Juha Karhunen,et al.  An Unsupervised Ensemble Learning Method for Nonlinear Dynamic State-Space Models , 2002, Neural Computation.

[9]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[10]  Jean-Francois Cardoso,et al.  Approximate likelihood for noisy mixtures , 1999 .

[11]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[12]  D. Cohen Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents , 1968, Science.

[13]  Harri Valpola,et al.  Accurate, Fast and Stable Denoising Source Separation Algorithms , 2004, ICA.

[14]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[15]  J. Zimmerman,et al.  Design and Operation of Stable rf‐Biased Superconducting Point‐Contact Quantum Devices, and a Note on the Properties of Perfectly Clean Metal Contacts , 1970 .

[16]  S Makeig,et al.  Blind separation of auditory event-related brain responses into independent components. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  P. Földiák,et al.  Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.

[19]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[20]  Harri Lappalainen,et al.  Ensemble learning for independent component analysis , 1999 .

[21]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[22]  Rangaraj M. Rangayyan,et al.  Biomedical Signal Analysis: A Case-Study Approach , 2001 .

[23]  H. Lappalainen Fast Algorithms for Bayesian Independent Component Analysis , 2000 .

[24]  Andreas Ziehe,et al.  TDSEP { an e(cid:14)cient algorithm for blind separation using time structure , 1998 .

[25]  Shiro Ikeda,et al.  Independent component analysis for noisy data -- MEG data analysis , 2000, Neural Networks.

[26]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[27]  Harri Valpola,et al.  Behaviourally meaningful representations from normalisation and context-guided denoising , 2004 .

[28]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[29]  Erkki Oja,et al.  An Experimental Comparison of Neural Algorithms for Independent Component Analysis and Blind Separation , 1999, Int. J. Neural Syst..

[30]  Erkki Oja,et al.  DYNAMICAL FACTOR ANALYSIS OF RHYTHMIC MAGNETOENCEPHALOGRAPHIC ACTIVITY , 2001 .

[31]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Juha Karhunen,et al.  Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.

[33]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[34]  Aapo Hyvärinen,et al.  Topographic Independent Component Analysis , 2001, Neural Computation.

[35]  J. Karhunen,et al.  Building Blocks for Hierarchical Latent Variable Models , 2001 .

[36]  A. Viterbi CDMA: Principles of Spread Spectrum Communication , 1995 .

[37]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[38]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[39]  Hagai Attias,et al.  Independent Factor Analysis , 1999, Neural Computation.

[40]  Fetsje Bijma,et al.  A maximum-likelihood estimator for trial-to-trial variations in noisy MEG/EEG data sets , 2004, IEEE Transactions on Biomedical Engineering.

[41]  J. Astola,et al.  Fundamentals of Nonlinear Digital Filtering , 1997 .

[42]  Gunnar Rätsch,et al.  Kernel PCA pattern reconstruction via approximate pre-images. , 1998 .

[43]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[44]  Terrence J. Sejnowski,et al.  Variational Bayesian Learning of ICA with Missing Data , 2003, Neural Computation.

[45]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[46]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[47]  Aapo Hyvärinen,et al.  Icasso: software for investigating the reliability of ICA estimates by clustering and visualization , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).

[48]  Andrzej Cichocki,et al.  Neural networks for blind decorrelation of signals , 1997, IEEE Trans. Signal Process..

[49]  Konrad P. Körding,et al.  Neurons with Two Sites of Synaptic Integration Learn Invariant Representations , 2001, Neural Computation.

[50]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[51]  T. Ristaniemi,et al.  ICA-RAKE switching for jammer cancellation in DS-CDMA array systems , 2002, IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications,.

[52]  A. J. Bell,et al.  INDEPENDENT COMPONENT ANALYSIS OF BIOMEDICAL SIGNALS , 2000 .

[53]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[54]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[55]  E. Oja,et al.  Blind decomposition of multimodal evoked responses and DC fields , 2003 .

[56]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[57]  Ricardo Vigário,et al.  Overlearning in Marginal Distribution-Based ICA: Analysis and Solutions , 2003, J. Mach. Learn. Res..

[58]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[59]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[60]  G. Deco,et al.  A hierarchical neural system with attentional top–down enhancement of the spatial resolution for object recognition , 2000, Vision Research.

[61]  Olivier Sibony,et al.  Fetal electrocardiogram extraction based on non-stationary ICA and wavelet denoising , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[62]  Néstor Parga,et al.  Transform-Invariant Recognition by Association in a Recurrent Network , 1998, Neural Computation.

[63]  R. A. Choudrey FLEXIBLE BAYESIAN INDEPENDENT COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION , 2001 .

[64]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[65]  Ritva Paetau,et al.  Magnetoencephalography in pediatric neuroimaging , 2002 .

[66]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[67]  Abhisek Ukil,et al.  Adjusted Haar wavelet for application in the power systems disturbance analysis , 2008, Digit. Signal Process..

[68]  S. Mallat A wavelet tour of signal processing , 1998 .