Integrating depth and color cues for dense multi-resolution scene mapping using RGB-D cameras

The mapping of environments is a prerequisite for many navigation and manipulation tasks. We propose a novel method for acquiring 3D maps of indoor scenes from a freely moving RGB-D camera. Our approach integrates color and depth cues seamlessly in a multi-resolution map representation. We consider measurement noise characteristics and exploit dense image neighborhood to rapidly extract maps from RGB-D images. An efficient ICP variant allows maps to be registered in real-time at VGA resolution on a CPU. For simultaneous localization and mapping, we extract key views and optimize the trajectory in a probabilistic framework. Finally, we propose an efficient randomized loop-closure technique that is designed for on-line operation. We benchmark our method on a publicly available RGB-D dataset and compare it with a state-of-the-art approach that uses sparse image features.

[1]  Andrea Censi,et al.  An accurate closed-form estimate of ICP's covariance , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  Daniel Cremers,et al.  Real-Time Dense Geometry from a Handheld Camera , 2010, DAGM-Symposium.

[3]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[4]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[5]  Daniel Cremers,et al.  Real-time visual odometry from dense RGB-D images , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[6]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[7]  Wolfram Burgard,et al.  An evaluation of the RGB-D SLAM system , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[9]  Vincent Lepetit,et al.  View-based Maps , 2010, Int. J. Robotics Res..

[10]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[13]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  Wolfram Burgard,et al.  Real-time 3D visual SLAM with a hand-held camera , 2011 .

[15]  Wolfram Burgard,et al.  Methoden Online-6 DSLAM für RGB-D-Sensoren 6 D Visual SLAM for RGB-D Sensors , 2012 .

[16]  A. Nuchter,et al.  6D SLAM with approximate data association , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[17]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Jörg Stückler,et al.  Robust Real-Time Registration of RGB-D Images using Multi-Resolution Surfel Representations , 2012, ROBOTIK.

[19]  Tom Duckett,et al.  Scan registration for autonomous mining vehicles using 3D‐NDT , 2007, J. Field Robotics.

[20]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.