Augmented Lagrangian formulation of orbital-free density functional theory

We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas-Fermi-von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-order finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.

[1]  Louis G. Birta,et al.  Modelling and Simulation , 2013, Simulation Foundations, Methods and Applications.

[2]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[3]  Vincent L. Lignères,et al.  Improving the orbital-free density functional theory description of covalent materials. , 2005, The Journal of chemical physics.

[4]  David A. Mazziotti,et al.  Spectral difference methods for solving differential equations , 1999 .

[5]  Elliott H. Lieb,et al.  The Thomas—Fermi—von Weizsäcker Theory of Atoms and Molecules , 1981 .

[6]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[7]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[8]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[9]  R. LeVeque Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .

[10]  M. Ortiz,et al.  Non-periodic finite-element formulation of Kohn–Sham density functional theory , 2010 .

[11]  James R. Chelikowsky,et al.  Real-space pseudopotential method for computing the electronic properties of periodic systems , 2004 .

[12]  Efthimios Kaxiras,et al.  Kinetic energy density functionals for non-periodic systems , 2001, cond-mat/0112040.

[13]  Yvon Maday,et al.  Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models , 2010, 1003.1612.

[14]  Phanish Suryanarayana,et al.  Coarse-graining Kohn-Sham Density Functional Theory , 2012, 1208.1589.

[15]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[16]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[17]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[18]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Chen Huang,et al.  Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations , 2010, Comput. Phys. Commun..

[21]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[22]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[23]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[24]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[25]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[26]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[27]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[28]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[29]  Simon D. Elliott,et al.  Clusters of aluminium, a density functional study , 1999 .

[30]  D. Mazziotti,et al.  Spectral differences in real-space electronic structure calculations. , 2004, The Journal of chemical physics.

[31]  Hellmut Haberland,et al.  Clusters of Atoms and Molecules II , 1994 .

[32]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[33]  P. Lions,et al.  Molecular simulation and related topics: some open mathematical problems , 2008 .

[34]  John P. Boyd,et al.  Sum-accelerated pseudospectral methods: the Euler-accelerated sinc algorithm , 1991 .

[35]  Conjugate-gradient optimization method for orbital-free density functional calculations. , 2004, The Journal of chemical physics.

[36]  Chen Huang,et al.  Can orbital-free density functional theory simulate molecules? , 2012, The Journal of chemical physics.

[37]  Richard J. Needs,et al.  A pseudopotential total energy study of impurity-promoted intergranular embrittlement , 1990 .

[38]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[39]  Kaushik Bhattacharya,et al.  Quasi-continuum orbital-free density-functional theory : A route to multi-million atom non-periodic DFT calculation , 2007 .

[40]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[41]  Yousef Saad,et al.  Parallel implementation of time-dependent density functional theory☆ , 2003 .

[42]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[43]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[44]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[45]  E. Carter,et al.  Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory. , 2007, Physical chemistry chemical physics : PCCP.

[46]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[47]  E. Carter,et al.  Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases , 2003 .

[48]  Chen Huang,et al.  PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .

[50]  Phanish Suryanarayana,et al.  On spectral quadrature for linear-scaling Density Functional Theory , 2013 .

[51]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[52]  Phanish Suryanarayana,et al.  A mesh-free convex approximation scheme for Kohn-Sham density functional theory , 2011, J. Comput. Phys..

[53]  X Blanc,et al.  Nonlinear instability of density-independent orbital-free kinetic-energy functionals. , 2005, The Journal of chemical physics.

[54]  Vikram Gavini,et al.  Higher-order adaptive finite-element methods for orbital-free density functional theory , 2012, J. Comput. Phys..

[55]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[56]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[57]  P A Sterne,et al.  Real-space formulation of the electrostatic potential and total energy of solids , 2005 .

[58]  Emily A. Carter,et al.  Preconditioners and Electron Density Optimization in Orbital-Free Density Functional Theory , 2012 .

[59]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[60]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[61]  Balachandran Radhakrishnan,et al.  Effect of cell size on the energetics of vacancies in aluminum studied via orbital-free density functional theory , 2010 .

[62]  Emily A. Carter,et al.  Introducing PROFESS: A new program for orbital-free density functional theory calculations , 2008, Comput. Phys. Commun..

[63]  Kaushik Bhattacharya,et al.  Non-periodic finite-element formulation of orbital-free density functional theory , 2006 .

[64]  Owe Axelsson,et al.  A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .