Aggregation Estimation for 2D Moving Points

The new max-count aggregation operator presented finds the maximum number of 2D moving points that overlap a moving query rectangle within a specified time interval. Two linearly moving points define the query rectangle which may move, and grow or shrink over time. We give the first constant running-time estimation algorithm to solve the max-count aggregation problem in two dimensions. The estimation algorithm uses 4D buckets to index objects. The implementation of the max-count estimation algorithm and the experimental data show that the method exhibits good accuracy and speed

[1]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[2]  Jan Chomicki,et al.  A geometric framework for specifying spatiotemporal objects , 1999, Proceedings. Sixth International Workshop on Temporal Representation and Reasoning. TIME-99.

[3]  Lixin Li,et al.  Interpolation methods for spatio-temporal geographic data , 2004, Comput. Environ. Urban Syst..

[4]  Özgür Ulusoy,et al.  A Quadtree-Based Dynamic Attribute Indexing Method , 1998, Comput. J..

[5]  Peter Z. Revesz,et al.  Spatiotemporal reasoning about epidemiological data , 2006, Artif. Intell. Medicine.

[6]  Peter Z. Revesz,et al.  Efficient rectangle indexing algorithms based on point dominance , 2005, 12th International Symposium on Temporal Representation and Reasoning (TIME'05).

[7]  Klaus H. Hinrichs,et al.  Managing uncertainty in moving objects databases , 2004, TODS.

[8]  Yi Chen,et al.  Max-count aggregation estimation for moving points , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[9]  Dimitrios Gunopulos,et al.  Indexing mobile objects using dual transformations , 2004, The VLDB Journal.

[10]  Yi Chen,et al.  Efficient aggregation over moving objects , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[11]  Chinya V. Ravishankar,et al.  Roads, codes, and spatiotemporal queries , 2004, PODS.

[12]  Peter Z. Revesz,et al.  Introduction to Constraint Databases , 2002, Texts in Computer Science.

[13]  Ouri Wolfson,et al.  Accuracy and Resource Concumption in Tracking and Location Prediction , 2003, SSTD.

[14]  Dimitrios Gunopulos,et al.  Indexing mobile objects on the plane , 2002, Proceedings. 13th International Workshop on Database and Expert Systems Applications.

[15]  Stéphane Grumbach,et al.  The DEDALE system for complex spatial queries , 1998, SIGMOD '98.

[16]  Jianwen Su,et al.  On moving object queries: (extended abstract) , 2002, PODS '02.

[17]  Chin-Wan Chung,et al.  Selectivity estimation for spatio-temporal queries to moving objects , 2002, SIGMOD '02.

[18]  Jan Chomicki,et al.  Classes of Spatio-Temporal Objects and their Closure Properties , 2004, Annals of Mathematics and Artificial Intelligence.

[19]  Pankaj K. Agarwal,et al.  Indexing moving points (extended abstract) , 2000, PODS '00.

[20]  Min Ouyang,et al.  Approximate query evaluation using linear constraint databases , 2001, Proceedings Eighth International Symposium on Temporal Representation and Reasoning. TIME 2001.

[21]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[22]  Mengchu Cai,et al.  Parametric R-Tree: An Index Structure for Moving Objects , 2000 .

[23]  Sridhar Ramaswamy,et al.  Selectivity estimation in spatial databases , 1999, SIGMOD '99.

[24]  Peter Z. Revesz,et al.  Parametric Rectangles: A Model for Querying and Animation of Spatiotemporal Databases , 2000, EDBT.

[25]  Dimitrios Gunopulos,et al.  Efficient computation of temporal aggregates with range predicates , 2001, PODS '01.

[26]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[27]  Dimitrios Gunopulos,et al.  On-Line Discovery of Dense Areas in Spatio-temporal Databases , 2003, SSTD.

[28]  Dimitrios Gunopulos,et al.  Selectivity estimators for multidimensional range queries over real attributes , 2005, The VLDB Journal.

[29]  Jimeng Sun,et al.  The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries , 2003, VLDB.

[30]  Beng Chin Ooi,et al.  Efficient indexing of the historical, present, and future positions of moving objects , 2005, MDM '05.

[31]  Dimitrios Gunopulos,et al.  Approximating multi-dimensional aggregate range queries over real attributes , 2000, SIGMOD '00.

[32]  Pankaj K. Agarwal,et al.  Indexing Moving Points , 2003, J. Comput. Syst. Sci..

[33]  Michel Scholl,et al.  Building a constraint-based spatial database system: model, languages, and implementation , 2003, Inf. Syst..

[34]  Jimeng Sun,et al.  Selectivity estimation for predictive spatio-temporal queries , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).