Protein folding in membranes

Separation of cells and organelles by bilayer membranes is a fundamental principle of life. Cellular membranes contain a baffling variety of proteins, which fulfil vital functions as receptors and signal transducers, channels and transporters, motors and anchors. The vast majority of membrane-bound proteins contain bundles of α-helical transmembrane domains. Understanding how these proteins adopt their native, biologically active structures in the complex milieu of a membrane is therefore a major challenge in today’s life sciences. Here, we review recent progress in the folding, unfolding and refolding of α-helical membrane proteins and compare the molecular interactions that stabilise proteins in lipid bilayers. We also provide a critical discussion of a detergent denaturation assay that is increasingly used to determine membrane-protein stability but is not devoid of conceptual difficulties.

[1]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[2]  William F. DeGrado,et al.  Experimental and computational evaluation of forces directing the association of transmembrane helices. , 2009, Journal of the American Chemical Society.

[3]  C. Anfinsen,et al.  Side-chain interactions governing the pairing of half-cystine residues in ribonuclease. , 1962, The Journal of biological chemistry.

[4]  J. Bowie,et al.  Similar energetic contributions of packing in the core of membrane and water-soluble proteins. , 2009, Journal of the American Chemical Society.

[5]  M. Brown,et al.  Modulation of Rhodopsin Function by Properties of the Membrane Bilayer , 2022 .

[6]  J. Bowie Solving the membrane protein folding problem , 2005, Nature.

[7]  Martin Wiedmann,et al.  The Organizing Principle in the Formation of the T Cell Receptor-CD3 Complex , 2002, Cell.

[8]  P. Booth,et al.  The transition state for integral membrane protein folding , 2009, Proceedings of the National Academy of Sciences.

[9]  D. Engelman,et al.  Helical membrane protein folding, stability, and evolution. , 2000, Annual review of biochemistry.

[10]  O. Ptitsyn Kinetic and equilibrium intermediates in protein folding. , 1994, Protein engineering.

[11]  R. Cantor,et al.  The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. , 1999, Chemistry and physics of lipids.

[12]  R. Templer,et al.  Phosphatidylglycerol lipids enhance folding of an alpha helical membrane protein. , 2008, Journal of molecular biology.

[13]  William F. DeGrado,et al.  Asparagine-mediated self-association of a model transmembrane helix , 2000, Nature Structural Biology.

[14]  C. Lüpfert,et al.  Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. , 1999, Biophysical journal.

[15]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[16]  N. Isaacs,et al.  Probing the interface between membrane proteins and membrane lipids by X-ray crystallography. , 2001, Trends in biochemical sciences.

[17]  Volkhard Helms,et al.  Attraction within the membrane , 2002, EMBO reports.

[18]  M. Wiener,et al.  Outer membrane protein A of E. coli folds into detergent micelles, but not in the presence of monomeric detergent , 1999, Protein science : a publication of the Protein Society.

[19]  P. Roepe,et al.  Characterization and functional reconstitution of a soluble form of the hydrophobic membrane protein lac permease from Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[20]  O. Ptitsyn,et al.  [Stages in the mechanism of self-organization of protein molecules]. , 1973, Doklady Akademii nauk SSSR.

[21]  G. Heijne,et al.  Molecular code for transmembrane-helix recognition by the Sec61 translocon , 2007, Nature.

[22]  Gunnar von Heijne,et al.  How translocons select transmembrane helices. , 2008, Annual review of biophysics.

[23]  R. Renthal An unfolding story of helical transmembrane proteins. , 2006, Biochemistry.

[24]  D. Engelman,et al.  Bacteriorhodopsin is an inside-out protein. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[25]  L. Dubrovsky,et al.  Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer. , 2004, Journal of molecular biology.

[26]  H. Coster,et al.  Energy of formation of bimolecular lipid membranes. , 1968, Biochimica et biophysica acta.

[27]  J. Bowie,et al.  A method for assessing the stability of a membrane protein. , 1997, Biochemistry.

[28]  G. Lindblom,et al.  Wild-type Escherichia coli Cells Regulate the Membrane Lipid Composition in a Window between Gel and Non-lamellar Structures (*) , 1996, The Journal of Biological Chemistry.

[29]  K. Dill,et al.  The Protein Folding Problem , 1993 .

[30]  R. Wolfenden,et al.  Influences of solvent water on protein folding: free energies of solvation of cis and trans peptides are nearly identical. , 1988, Biochemistry.

[31]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[32]  G. Feher,et al.  The bacterial photosynthetic reaction center as a model for membrane proteins. , 1989, Annual review of biochemistry.

[33]  D. Marsh Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. , 2007, Biophysical journal.

[34]  Roland Riek,et al.  NMR Structure of Mistic, a Membrane-Integrating Protein for Membrane Protein Expression , 2005, Science.

[35]  D. Engelman,et al.  Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. , 1992, The Journal of biological chemistry.

[36]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[37]  Jie Liang,et al.  Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins , 2005, Proteins.

[38]  J. Popot,et al.  On the distribution of amino acid residues in transmembrane alpha-helix bundles. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Sanders,et al.  Kinetic study of folding and misfolding of diacylglycerol kinase in model membranes. , 2001, Biochemistry.

[40]  C. Pace,et al.  Forces contributing to the conformational stability of proteins , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  M. Bloom,et al.  Mattress model of lipid-protein interactions in membranes. , 1984, Biophysical journal.

[42]  F. Crick,et al.  The packing of α‐helices: simple coiled‐coils , 1953 .

[43]  Erik Lindahl,et al.  Protein contents in biological membranes can explain abnormal solvation of charged and polar residues , 2009, Proceedings of the National Academy of Sciences.

[44]  W E Stites,et al.  Energetics of side chain packing in staphylococcal nuclease assessed by systematic double mutant cycles. , 2001, Biochemistry.

[45]  J. Spudich,et al.  Crystal Structure of Sensory Rhodopsin II at 2.4 Angstroms: Insights into Color Tuning and Transducer Interaction , 2001, Science.

[46]  H. Robert Guy,et al.  The gating mechanism of the large mechanosensitive channel MscL , 2001, Nature.

[47]  Rhoderick E. Brown,et al.  New BODIPY lipid probes for fluorescence studies of membranes Published, JLR Papers in Press, April 7, 2007. , 2007, Journal of Lipid Research.

[48]  D. Marsh,et al.  X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines. , 1984, Biochemistry.

[49]  S. Kaneshina,et al.  Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan. , 2005, Biophysical chemistry.

[50]  H. Kaback,et al.  Role of the charge pair aspartic acid-237-lysine-358 in the lactose permease of Escherichia coli. , 1993, Biochemistry.

[51]  Martin B Ulmschneider,et al.  Properties of integral membrane protein structures: Derivation of an implicit membrane potential , 2005, Proteins.

[52]  S. White,et al.  The preference of tryptophan for membrane interfaces. , 1998, Biochemistry.

[53]  Gregory A Voth,et al.  Coarse-grained peptide modeling using a systematic multiscale approach. , 2007, Biophysical journal.

[54]  D. Otzen Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. , 2003, Journal of molecular biology.

[55]  James J. Chou,et al.  The Structure of the ζζ Transmembrane Dimer Reveals Features Essential for Its Assembly with the T Cell Receptor , 2006, Cell.

[56]  M. Tate,et al.  Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. , 1993, Biophysical journal.

[57]  T. McIntosh,et al.  Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. , 1996, Chemistry and physics of lipids.

[58]  J Deisenhofer,et al.  X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.

[59]  Dieter Langosch,et al.  Interaction of transmembrane helices by a knobs‐into‐holes packing characteristic of soluble coiled coils , 1998, Proteins.

[60]  J. Killian,et al.  Influence of lipids on membrane assembly and stability of the potassium channel KcsA , 2002, FEBS letters.

[61]  Graham Warren,et al.  Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  L. Frink,et al.  Density functional theory approach for coarse-grained lipid bilayers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  C. Pace,et al.  Hydrogen bonding stabilizes globular proteins. , 1996, Biophysical journal.

[64]  A. Hodgkin,et al.  Propagation of electrical signals along giant nerve fibres , 1952, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[65]  B. Matthews,et al.  Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. , 1992, Science.

[66]  J. Killian,et al.  Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. , 2004, Biochimica et biophysica acta.

[67]  C. Deber,et al.  Polar residues in membrane domains of proteins: molecular basis for helix-helix association in a mutant CFTR transmembrane segment. , 2002, Biochemistry.

[68]  C. Montecucco,et al.  Bilayer thickness and enzymatic activity in the mitochondrial cytochrome c oxidase and ATPase complex , 1982, FEBS letters.

[69]  R. Hartung,et al.  Phosphatidylcholine-fatty acid membranes. I. Effects of protonation, salt concentration, temperature and chain-length on the colloidal and phase properties of mixed vesicles, bilayers and nonlamellar structures. , 1988, Biochimica et biophysica acta.

[70]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[71]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[72]  J. East,et al.  Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. , 2003, Biochemistry.

[73]  Karen Hecht,et al.  Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment. , 2007, Biochemistry.

[74]  J. R. Lewis,et al.  Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids. , 1999, Biochemistry.

[75]  C. Deber,et al.  Interhelical hydrogen bonds in the CFTR membrane domain , 2001, Nature Structural Biology.

[76]  Ming-Ming Zhou Phosphothreonine recognition comes into focus , 2000, Nature Structural Biology.

[77]  I. Vattulainen,et al.  Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. , 2007, Biophysical journal.

[78]  Carola Hunte,et al.  Lipids in membrane protein structures. , 2004, Biochimica et biophysica acta.

[79]  J. Cupp-Vickery,et al.  Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli. , 2000, Journal of molecular biology.

[80]  H. Brockman,et al.  Dipole potential of lipid membranes. , 1994, Chemistry and physics of lipids.

[81]  E. Jakobsson,et al.  Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. , 1995, Biophysical journal.

[82]  R. MacKinnon,et al.  Phospholipids and the origin of cationic gating charges in voltage sensors , 2006, Nature.

[83]  R. MacKinnon,et al.  Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation , 2004, Nature.

[84]  D Eisenberg,et al.  Hydrophobic organization of membrane proteins. , 1989, Science.

[85]  V. Parsegian,et al.  MEMBRANE INTERACTION AND DEFORMATION , 1983, Annals of the New York Academy of Sciences.

[86]  F. Jähnig,et al.  What is the surface tension of a lipid bilayer membrane? , 1996, Biophysical journal.

[87]  J. Tocanne,et al.  Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. , 2000, Biochemistry.

[88]  H. Ly,et al.  The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. , 2004, Biophysical journal.

[89]  Alan R. Fersht,et al.  From the first protein structures to our current knowledge of protein folding: delights and scepticisms , 2008, Nature Reviews Molecular Cell Biology.

[90]  L. Tamm,et al.  Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening , 2006, Nature chemical biology.

[91]  Ole G Mouritsen,et al.  Lipids do influence protein function-the hydrophobic matching hypothesis revisited. , 2004, Biochimica et biophysica acta.

[92]  T. Rapoport,et al.  Protein translocation by the Sec61/SecY channel. , 2005, Annual review of cell and developmental biology.

[93]  D. Engelman,et al.  Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[95]  R. Cantor Lateral Pressures in Cell Membranes: A Mechanism for Modulation of Protein Function , 1997 .

[96]  Gunnar von Heijne,et al.  Transmembrane helices before, during, and after insertion. , 2005, Current opinion in structural biology.

[97]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[98]  P. Booth,et al.  Combined kinetic and thermodynamic analysis of α-helical membrane protein unfolding , 2007, Proceedings of the National Academy of Sciences.

[99]  Jie Liang,et al.  Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. , 2001, Journal of molecular biology.

[100]  R. Cantor,et al.  The lateral pressure profile in membranes: a physical mechanism of general anesthesia. , 1998, Biochemistry.

[101]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[102]  S. White,et al.  Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups. , 1992, Biophysical journal.

[103]  E. Campbell,et al.  Voltage Sensor of Kv1.2: Structural Basis of Electromechanical Coupling , 2005, Science.

[104]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.

[105]  N. C. Robinson,et al.  Functional binding of cardiolipin to cytochromec oxidase , 1993, Journal of bioenergetics and biomembranes.

[106]  Arne Elofsson,et al.  Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria , 1997, Protein science : a publication of the Protein Society.

[107]  K. Dill,et al.  Denatured states of proteins. , 1991, Annual review of biochemistry.

[108]  Alessandro Senes,et al.  The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[109]  G. von Heijne,et al.  Charge pair interactions in a model transmembrane helix in the ER membrane. , 2000, Journal of molecular biology.

[110]  G. Cymes,et al.  Probing ion-channel pores one proton at a time , 2005, Nature.

[111]  R. Cantor,et al.  Lipid composition and the lateral pressure profile in bilayers. , 1999, Biophysical journal.

[112]  B. Bormann,et al.  Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor , 1996, Nature Structural Biology.

[113]  Thomas Huber,et al.  Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. , 2006, Biophysical journal.

[114]  C. D. Richards,et al.  The effect of bilayer thickness and n-alkanes on the activity of the (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum. , 1981, The Journal of biological chemistry.

[115]  T. McIntosh,et al.  Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. , 1986, Biochemistry.

[116]  Kaback Hr,et al.  Isolation and functional reconstitution of soluble melibiose permease from Escherichia coli. , 1990 .

[117]  J. Tocanne,et al.  Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? , 1999, FEBS letters.

[118]  D. Engelman,et al.  Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. , 1983, Journal of molecular biology.

[119]  R. Templer,et al.  Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylcholine. , 1998, Faraday discussions.

[120]  W. DeGrado,et al.  Solution Structure of α2D, a Nativelike de Novo Designed Protein , 1998 .

[121]  James U Bowie,et al.  Structural imperatives impose diverse evolutionary constraints on helical membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[122]  J. Killian,et al.  Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. , 2001, Biochemistry.

[123]  P. Roepe,et al.  Isolation and functional reconstitution of soluble melibiose permease from Escherichia coli. , 1990, Biochemistry.

[124]  D. Engelman,et al.  A dimerization motif for transmembrane α–helices , 1994, Nature Structural Biology.

[125]  D. Engelman,et al.  Interhelical hydrogen bonding drives strong interactions in membrane proteins , 2000, Nature Structural Biology.

[126]  D. Langosch,et al.  The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues , 1998, Protein science : a publication of the Protein Society.

[127]  Dmitrij Frishman,et al.  Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs. , 2007, Journal of molecular biology.

[128]  S. Bezrukov Functional consequences of lipid packing stress , 2000 .

[129]  Jie Liang,et al.  Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers , 2002, Proteins.

[130]  O. Ptitsyn,et al.  α‐lactalbumin: compact state with fluctuating tertiary structure? , 1981, FEBS letters.

[131]  Gunnar von Heijne,et al.  Formation of Transmembrane Helices In Vivo—Is Hydrophobicity All that Matters? , 2007 .

[132]  L. Tamm,et al.  Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins. , 2007, Journal of the American Chemical Society.

[133]  D. Shortle,et al.  Persistence of Native-Like Topology in a Denatured Protein in 8 M Urea , 2001, Science.

[134]  Zhe Lu,et al.  Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels , 2008, Nature.

[135]  R. Lewis,et al.  Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. , 1993, Biophysical journal.

[136]  G. Heijne,et al.  Recognition of transmembrane helices by the endoplasmic reticulum translocon , 2005, Nature.

[137]  P. S. Kim,et al.  X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. , 1991, Science.

[138]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[139]  F. L. Crane,et al.  Tightly bound cardiolipin in cytochrome oxidase. , 1971, Biochimica et biophysica acta.

[140]  J. Bowie,et al.  Methods for measuring the thermodynamic stability of membrane proteins. , 2009, Methods in enzymology.

[141]  J. Killian,et al.  Stability of KcsA tetramer depends on membrane lateral pressure. , 2004, Biochemistry.

[142]  Virgil L. Woods,et al.  Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins , 2008, Nature.

[143]  Gavin H. Thomas,et al.  Membrane protein topology: phospholipids call the shots , 2002 .

[144]  S. Hui,et al.  Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellar-hexagonal transition of phosphatidylethanolamine bilayers. , 1999, Biochimica et biophysica acta.

[145]  L. Tamm,et al.  Elastic coupling of integral membrane protein stability to lipid bilayer forces , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[146]  M. Gerstein,et al.  Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. , 2000, Journal of molecular biology.

[147]  R. Waugh,et al.  Mechano-chemistry of closed, vesicular membrane systems , 1977 .

[148]  T. Creamer,et al.  Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. , 1996, Biochemistry.

[149]  Ilpo Vattulainen,et al.  Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. , 2008, The journal of physical chemistry. B.

[150]  Paul Curnow,et al.  Membrane proteins, lipids and detergents: not just a soap opera. , 2004, Biochimica et biophysica acta.

[151]  G. von Heijne,et al.  Interface connections of a transmembrane voltage sensor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[152]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[153]  L. Tamm,et al.  Folding and assembly of β-barrel membrane proteins , 2004 .

[154]  I. Arkin,et al.  Experimental Measurement of the Strength of a Cα−H···O Bond in a Lipid Bilayer , 2004 .

[155]  R. Rand,et al.  Cardiolipin forms hexagonal structures with divalent cations. , 1972, Biochimica et biophysica acta.

[156]  P. Cullis,et al.  Effects of divalent cations and pH on phosphatidylserine model membranes: a 31P NMR study. , 1980, Biochemical and biophysical research communications.

[157]  J. Bowie,et al.  A C alpha-H...O hydrogen bond in a membrane protein is not stabilizing. , 2004, Journal of the American Chemical Society.

[158]  Stephanie Unterreitmeier,et al.  Tryptophan supports interaction of transmembrane helices. , 2005, Journal of molecular biology.

[159]  Kristian Rother,et al.  Molecular packing and packing defects in helical membrane proteins. , 2005, Biophysical journal.

[160]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[161]  S. L. KellerA,et al.  A Probability of Alamethicin Conductance States Varies with Nonlamellar Tendency of Bilayer Phospholipids , 2022 .

[162]  J. East,et al.  Interactions of phospholipids with the potassium channel KcsA. , 2002, Biophysical journal.

[163]  M. Caffrey,et al.  Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics. , 1981, Biochemistry.

[164]  S. O. Smith,et al.  Internal packing of helical membrane proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[165]  J. Killian,et al.  Hydrophobic mismatch between proteins and lipids in membranes. , 1998, Biochimica et biophysica acta.

[166]  D. Marsh,et al.  Activation of beef-heart cytochrome c oxidase by cardiolipin and analogues of cardiolipin. , 1990, Biochimica et biophysica acta.

[167]  Duan Yang,et al.  Side-chain contributions to membrane protein structure and stability. , 2004, Journal of molecular biology.

[168]  B Honig,et al.  Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. , 1997, Biophysical journal.

[169]  Marcey L Waters,et al.  Aromatic interactions in model systems. , 2002, Current opinion in chemical biology.

[170]  G. Heijne The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans‐membrane topology , 1986, The EMBO journal.

[171]  M. Zuckermann,et al.  What's so special about cholesterol? , 2004, Lipids.

[172]  N. C. Robinson,et al.  Phospholipase A(2) digestion of cardiolipin bound to bovine cytochrome c oxidase alters both activity and quaternary structure. , 1999, Biochemistry.

[173]  D. Marsh Lateral pressure in membranes. , 1996, Biochimica et biophysica acta.

[174]  G. Feigenson Fluorescence quenching in model membranes. , 1982, Biophysical journal.

[175]  A. Ducruix,et al.  Structure of the detergent phase and protein-detergent interactions in crystals of the wild-type (strain Y) Rhodobacter sphaeroides photochemical reaction center. , 1991, Biochemistry.

[176]  W. DeGrado,et al.  Polar side chains drive the association of model transmembrane peptides. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[177]  V. Dötsch,et al.  Large-scale production of functional membrane proteins , 2008, Cellular and Molecular Life Sciences.

[178]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[179]  B Honig,et al.  Free-energy determinants of alpha-helix insertion into lipid bilayers. , 1996, Biophysical journal.

[180]  Tae-Joon Jeon,et al.  Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[181]  G. Schwarz,et al.  Lipid dependence of peptide‐membrane interactions , 1989, FEBS letters.

[182]  B. Matthews,et al.  Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution. , 1987, Journal of molecular biology.

[183]  T. Wilson,et al.  The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. , 1991, Biochimica et biophysica acta.

[184]  Jui-Yoa Chang Structural heterogeneity of 6 M GdmCl-denatured proteins: implications for the mechanism of protein folding. , 2009, Biochemistry.

[185]  Stephen H. White,et al.  Experimentally determined hydrophobicity scale for proteins at membrane interfaces , 1996, Nature Structural Biology.