A new approach of superconvergence analysis for two-dimensional time fractional diffusion equation

Abstract In this paper, a new approach of superconvergent estimate of bilinear finite element is established for two-dimensional time-fractional diffusion equation under fully-discrete scheme. The novelty of this approach is the combination technique of the interpolation and Ritz projection as well as the superclose estimate in H 1 -norm between them, which avoids the difficulty of constructing a postprocessing operator for Ritz projection operator, and reduces the regularity requirement of the exact solution. At the same time, three numerical examples are carried out to verify the theoretical analysis.

[1]  Igor M. Sokolov,et al.  Fractional diffusion in inhomogeneous media , 2005 .

[2]  Fawang Liu,et al.  Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations , 2016, Appl. Math. Lett..

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[5]  Santanu Saha Ray,et al.  Analytical solution of a fractional diffusion equation by Adomian decomposition method , 2006, Appl. Math. Comput..

[6]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[7]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[8]  Pan Chen,et al.  Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations , 2017, J. Sci. Comput..

[9]  Zhong-Ci Shi,et al.  A new superconvergence property of Wilson nonconforming finite element , 1997 .

[10]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[11]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[12]  Yang Liu,et al.  A mixed finite element method for a time-fractional fourth-order partial differential equation , 2014, Appl. Math. Comput..

[13]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[14]  Fawang Liu,et al.  Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation , 2016 .

[15]  Yang Liu,et al.  Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem , 2015, Comput. Math. Appl..

[16]  Hong Li,et al.  An $$H^1$$H1-Galerkin mixed finite element method for time fractional reaction–diffusion equation , 2015 .

[17]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[18]  Dongyang Shi,et al.  A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes , 2016, Appl. Math. Lett..

[19]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[20]  S. Das,et al.  Analytical solution of a fractional diffusion equation by variational iteration method , 2009, Comput. Math. Appl..

[21]  Yang Liu,et al.  Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation , 2016 .

[22]  Fawang Liu,et al.  The analytical solution and numerical solution of the fractional diffusion-wave equation with damping , 2012, Appl. Math. Comput..

[23]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[24]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[25]  I. Turner,et al.  Two New Implicit Numerical Methods for the Fractional Cable Equation , 2011 .

[26]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..