A mild and efficient synthetic protocol for Ferrier azaglycosylation promoted by ZnCl2/Al2O3

[1]  J. Kuo,et al.  Mechanistic insights into the substrate-controlled stereochemistry of glycals in one-pot rhodium-catalyzed aziridination and aziridine ring opening. , 2010, Chemistry.

[2]  Xue‐Wei Liu,et al.  ZnCl2/alumina impregnation catalyzed Ferrier rearrangement: an expedient synthesis of pseudoglycosides , 2009 .

[3]  N. Ramesh,et al.  Direct Ferrier rearrangement on unactivated glycals catalyzed by indium(III) chloride , 2009 .

[4]  Xue‐Wei Liu,et al.  (S)-Camphorsulfonic acid catalyzed highly stereoselective synthesis of pseudoglycosides. , 2009, Bioorganic & medicinal chemistry letters.

[5]  Lain-Jong Li,et al.  Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. , 2009, Angewandte Chemie.

[6]  J. Kuo,et al.  Highly stereoselective synthesis of aminoglycosides via rhodium-catalyzed and substrate-controlled aziridination of glycals. , 2009, Organic & biomolecular chemistry.

[7]  Y. Watanabe,et al.  Kinetically controlled Ferrier rearrangement of 3-O-mesyl-D-glycal derivatives. , 2009, Carbohydrate research.

[8]  Xue‐Wei Liu,et al.  A convenient synthesis of pseudoglycosides via a Ferrier-type rearrangement using metal-free H3PO4 catalyst , 2009 .

[9]  J. Kuo,et al.  Stereocontrolled intramolecular aziridination of glycals: ready access to aminoglycosides and mechanistic insights from DFT studies. , 2008, Chemistry.

[10]  Lei Shi,et al.  Ferric sulfate hydrate-catalyzed O-glycosylation using glycals with or without microwave irradiation , 2008 .

[11]  P. Colinas,et al.  Ferrier sulfonamidoglycosylation of D-glycals. , 2007, Carbohydrate research.

[12]  S. Chandrasekhar,et al.  Tris(pentafluorophenyl)borane catalyzed Ferrier azaglycosylation with sulfonamides and carbamates , 2004 .

[13]  E. Rafiee,et al.  A mild, efficient and alpha-selective glycosidation by using potassium dodecatungstocobaltate trihydrate as catalyst. , 2004, Bioorganic & Medicinal Chemistry Letters.

[14]  P. Srinivas,et al.  ZnCl2-catalyzed Ferrier reaction; synthesis of 2,3-unsaturated 1-O-glucopyranosides of allylic, benzylic and tertiary alcohols , 2003 .

[15]  K. A. Reddy,et al.  Microwave-Induced, InCl3-CatalyzedFerrier Rearrangement of Acetyl­glycals: Synthesis of 2,3-UnsaturatedGlycopyranosides , 2003 .

[16]  J. Yadav,et al.  Scandium Triflate Catalyzed Thioglycosidation of Glycals: A Facile Synthesis of 2,3-Unsaturated Thioglycopyranosides , 2003 .

[17]  J. Yadav,et al.  Dy(OTf)3-immobilized in ionic liquids: a novel and recyclable reaction media for the synthesis of 2,3-unsaturated glycopyranosides , 2002 .

[18]  Y. Venkateswarlu,et al.  An Efficient Method for the Synthesis of 2,3-Unsaturated Glycopyranosides Catalyzed by Bismuth Trichloride in Ferrier Rearrangement. , 2002 .

[19]  R. Schinazi,et al.  Structure-activity relationships of 2'-fluoro-2',3'-unsaturated D-nucleosides as anti-HIV-1 agents. , 2002, Journal of medicinal chemistry.

[20]  J. Yadav,et al.  InBr3-catalyzed Ferrier rearrangement: An efficient synthesis of C-pseudoglycals , 2002 .

[21]  R. Ferrier Substitution-with-Allylic-Rearrangement Reactions of Glycal Derivatives , 2001 .

[22]  M. Hayashi,et al.  Reaction of D-glycals with azidotrimethylsilane. , 2001, Carbohydrate research.

[23]  R. Schmidt,et al.  Yb(OTf)3-catalyzed C-glycosylation: highly stereoselective synthesis of C-pseudoglycals , 2001 .

[24]  K. Reddy,et al.  LiBF4-mediated C-glycosylation of glycals with allyltrimethylsilane: a facile synthesis of allyl C-glycosylic compounds. , 2001, Carbohydrate research.

[25]  J. Yadav,et al.  Iodine-Catalyzed Stereoselective Synthesis of Allylglycosides, Glycosyl Cyanides and Glycosyl azides , 2001 .

[26]  B. S. Babu,et al.  Indium trichloride catalyzed glycosidation. An expeditious synthesis of 2,3-unsaturated glycopyranosides† , 2000 .

[27]  Raymond A. Dwek,et al.  Glycobiology: Toward Understanding the Function of Sugars. , 1996, Chemical reviews.

[28]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[29]  C. K. Chu,et al.  Nucleosides and Nucleotides as Antitumor and Antiviral Agents , 1993, Springer US.

[30]  D. Sinou,et al.  Palladium(0)-based approach to heterocyclic N-glycosyl derivatives , 1992 .

[31]  D. Norbeck Chapter 16. Recent Advances in Anti-retroviral Chemotherapy for AIDS , 1990 .

[32]  Yuan Cheng,et al.  Glycosylation of unreactive substrates , 1989 .

[33]  R. Pauwels,et al.  Anti-Hiv-1 Activity of 2′,3′-Dideoxinucleoside Analogues : Structure-Activity Relationship , 1989 .

[34]  J. Herscovici,et al.  An improved method for the preparation of 2′,3′-unsaturated nucleosides: Synthesis of stereospecifically labelled ketonucleosides , 1988 .

[35]  D. Horton,et al.  Allylic rearrangement of 6-deoxyglycals having practical utility. , 1985, Carbohydrate research.

[36]  Jean-Claude Martin,et al.  Sur l'isomérisation du 1,5-anhydro-3,4,6-tri-O-benzyl-1,2-didésoxy-d-arabino-hex-1-énitol on présence d'acides de Lewis , 1977 .

[37]  T. Meguro,et al.  The direct utilization of unsaturated sugars in nucleoside syntheses. The synthesis, configuration, and conformation of certain hex-1-enitol-3-yl, hex-2-enopyranosyl-, and hexopyranosylpurines. The preparation of 9-(1,5-anhydro-2,3-dideoxy-D-arabino-hex-1-enitol-3-yl)adenine and 9-(2,3-dideoxy- -D-e , 1972, The Journal of organic chemistry.