CHOICE OF FREE PARAMETERS IN EXPANSIONS OF DISCRETE-TIME VOLTERRA MODELS USING KAUTZ FUNCTIONS

This work tackles the problem of modeling nonlinear systems using Volterra models based on Kautz functions. The drawback of requiring a large number of parameters in the representation of these models can be circumvented by describing every kernel using an orthonormal basis of functions, such as the Kautz basis. The resulting model, so-called Wiener/Volterra model, can be truncated into a few terms if the Kautz functions are properly designed. The underlying problem is how to select the free-design complex poles that fully parameterize these functions. A solution to this problem has been provided in the literature for linear systems, which can be represented by first-order Volterra models. A generalization of such strategy focusing on Volterra models of any order is presented in this paper. This problem is solved by minimizing an upper bound for the error resulting from the truncation of the kernel expansion into a finite number of functions. The aim is to minimize the number of two-parameter Kautz functions associated with a given series truncation error, thus reducing the complexity of the resulting finite-dimensional representation. The main result is the derivation of an analytical solution for a sub-optimal expansion of the Volterra kernels using a set of Kautz functions.

[1]  Paul W. Broome,et al.  Discrete Orthonormal Sequences , 1965, JACM.

[2]  W. Kautz Transient synthesis in the time domain , 1954 .

[3]  F.P.A. Benders,et al.  Optimality conditions for truncated Kautz series , 1996 .

[4]  N. Tanguy,et al.  Optimum choice of free parameter in orthonormal approximations , 1995, IEEE Trans. Autom. Control..

[5]  Noël Tanguy,et al.  Pertinent choice of parameters for discrete Kautz approximation , 2002, IEEE Trans. Autom. Control..

[6]  Tomás Oliveira e Silva,et al.  Stationarity conditions for the L2 error surface of the generalized orthonormal basis functions lattice filter , 1997, Signal Process..

[7]  Orest Iftime,et al.  Proceedings of the 16th IFAC World congress , 2006 .

[8]  Ricardo J. G. B. Campello,et al.  A note on the optimal expansion of Volterra models using Laguerre functions , 2006, Autom..

[9]  Ricardo J. G. B. Campello,et al.  Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..

[10]  Riwal Morvan,et al.  Pertinent parameters for Kautz approximation , 2000 .

[11]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1997, IEEE Trans. Autom. Control..

[12]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[13]  Wagner Caradori do Amaral,et al.  Optimal Expansions of Discrete-Time Volterra Models Using Laguerre Functions , 2003 .

[14]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[15]  Jozsef Bokor,et al.  System identification with generalized orthonormal basis functions , 1995, Autom..

[16]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1995, IEEE Trans. Autom. Control..

[17]  Satoru Takenaka On the Orthogonal Functions and a New Formula of Interpolation , 1925 .

[18]  Nasir Ahmed,et al.  Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..

[19]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[20]  G. Clowes,et al.  Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions , 1965 .

[21]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[22]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[23]  Guy A. Dumont,et al.  Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .

[24]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[25]  P. V. D. Hof,et al.  System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[26]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[27]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[28]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[29]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[30]  T. E. O. Silva Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles , 1995, IEEE Trans. Autom. Control..

[31]  B. Wahlberg System identification using Laguerre models , 1991 .

[32]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[33]  Tomás Oliveira e Silva,et al.  Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..

[34]  Wagner Caradori do Amaral,et al.  Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..

[35]  Jozsef Bokor,et al.  Approximate Identification in Laguerre and Kautz Bases , 1998, Autom..