CHOICE OF FREE PARAMETERS IN EXPANSIONS OF DISCRETE-TIME VOLTERRA MODELS USING KAUTZ FUNCTIONS
暂无分享,去创建一个
[1] Paul W. Broome,et al. Discrete Orthonormal Sequences , 1965, JACM.
[2] W. Kautz. Transient synthesis in the time domain , 1954 .
[3] F.P.A. Benders,et al. Optimality conditions for truncated Kautz series , 1996 .
[4] N. Tanguy,et al. Optimum choice of free parameter in orthonormal approximations , 1995, IEEE Trans. Autom. Control..
[5] Noël Tanguy,et al. Pertinent choice of parameters for discrete Kautz approximation , 2002, IEEE Trans. Autom. Control..
[6] Tomás Oliveira e Silva,et al. Stationarity conditions for the L2 error surface of the generalized orthonormal basis functions lattice filter , 1997, Signal Process..
[7] Orest Iftime,et al. Proceedings of the 16th IFAC World congress , 2006 .
[8] Ricardo J. G. B. Campello,et al. A note on the optimal expansion of Volterra models using Laguerre functions , 2006, Autom..
[9] Ricardo J. G. B. Campello,et al. Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..
[10] Riwal Morvan,et al. Pertinent parameters for Kautz approximation , 2000 .
[11] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1997, IEEE Trans. Autom. Control..
[12] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[13] Wagner Caradori do Amaral,et al. Optimal Expansions of Discrete-Time Volterra Models Using Laguerre Functions , 2003 .
[14] W. Rugh. Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .
[15] Jozsef Bokor,et al. System identification with generalized orthonormal basis functions , 1995, Autom..
[16] P. V. D. Hof,et al. A generalized orthonormal basis for linear dynamical systems , 1995, IEEE Trans. Autom. Control..
[17] Satoru Takenaka. On the Orthogonal Functions and a New Formula of Interpolation , 1925 .
[18] Nasir Ahmed,et al. Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..
[19] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems , 1980 .
[20] G. Clowes,et al. Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions , 1965 .
[21] B. Wahlberg,et al. Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .
[22] Francis J. Doyle,et al. Identification and Control Using Volterra Models , 2001 .
[23] Guy A. Dumont,et al. Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .
[24] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[25] P. V. D. Hof,et al. System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[26] P. Eykhoff. System Identification Parameter and State Estimation , 1974 .
[27] G. Dumont,et al. An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..
[28] Leon O. Chua,et al. Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .
[29] Bo Wahlberg,et al. On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..
[30] T. E. O. Silva. Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles , 1995, IEEE Trans. Autom. Control..
[31] B. Wahlberg. System identification using Laguerre models , 1991 .
[32] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[33] Tomás Oliveira e Silva,et al. Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..
[34] Wagner Caradori do Amaral,et al. Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..
[35] Jozsef Bokor,et al. Approximate Identification in Laguerre and Kautz Bases , 1998, Autom..