Variance Regularizing Adversarial Learning

We study how, in generative adversarial networks, variance in the discriminator's output affects the generator's ability to learn the data distribution. In particular, we contrast the results from various well-known techniques for training GANs when the discriminator is near-optimal and updated multiple times per update to the generator. As an alternative, we propose an additional method to train GANs by explicitly modeling the discriminator's output as a bi-modal Gaussian distribution over the real/fake indicator variables. In order to do this, we train the Gaussian classifier to match the target bi-modal distribution implicitly through meta-adversarial training. We observe that our new method, when trained together with a strong discriminator, provides meaningful, non-vanishing gradients.