High performance cutting of advanced aerospace alloys and composite materials

Abstract This paper presents an overview of the recent advances in high performance cutting of aerospace alloys and composite currently used in aeroengine and aerostructure applications. Progress in cutting tool development and its effect on tool wear and surface integrity characteristics of difficult to machine materials such as nickel based alloys, titanium and composites is presented. Further, advances in cutting technologies are discussed, focusing on the role of hybrid machining processes and cooling strategies (MQL, high pressure coolant, cryogenic) on machining performance. Finally, industrial perspectives are provided in the context of machining specific components where future challenges are discussed.

[1]  S. Paul,et al.  Some studies on high-pressure cooling in turning of Ti–6Al–4V , 2009 .

[2]  Emmanuel O. Ezugwu,et al.  Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools , 2004 .

[3]  Ekkard Brinksmeier,et al.  Influence of Milling Process Parameters on the Surface Integrity of CFRP , 2012 .

[4]  J. Paulo Davim,et al.  Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments , 2005 .

[5]  John W. Sutherland,et al.  Dry Machining and Minimum Quantity Lubrication , 2004 .

[6]  Riaz Muhammad,et al.  Comparing machinability of Ti-15-3-3-3 and Ni-625 alloys in UAT , 2012 .

[7]  Masashi Yamaguchi,et al.  Suppression of notch wear of a whisker reinforced ceramic tool in air-jet-assisted high-speed machining of Inconel 718 , 2015 .

[8]  Helmi Attia,et al.  Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions , 2010 .

[9]  Fritz Klocke,et al.  Potential of Modern Lubricoolant Strategies on Cutting Performance , 2013 .

[10]  Ming Chen,et al.  Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions , 2013 .

[11]  Salman Pervaiz,et al.  Analysis of lubrication strategies for sustainable machining during turning of titanium ti-6al-4v alloy , 2014 .

[12]  Matthew S. Dargusch,et al.  An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy , 2012 .

[13]  N. Bhatnagar,et al.  Damage Investigation in Drilling of Glass Fiber Reinforced Plastic Composite Laminates , 2004 .

[14]  M. H. Attia,et al.  Characterization and optimization of vibration-assisted drilling of fibre reinforced epoxy laminates , 2013 .

[15]  J. Fundenberger,et al.  Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy , 2010 .

[16]  S. Sun,et al.  Evolution of tool wear and its effect on cutting forces during dry machining of Ti-6Al-4V alloy , 2014 .

[17]  C. K. Huang,et al.  Milling of MAR-M247 nickel-based superalloy with high temperature and ultrasonic aiding , 2007 .

[18]  D. Aspinwall,et al.  Workpiece surface integrity considerations when finish turning gamma titanium aluminide , 2001 .

[19]  David K. Aspinwall,et al.  Workpiece surface integrity when slot milling γ-TiAl intermetallic alloy , 2014 .

[20]  Dahu Zhu,et al.  Tool wear characteristics in machining of nickel-based superalloys , 2013 .

[21]  I. Jawahir,et al.  Surface integrity in cryogenic machining of nickel based alloy—Inconel 718 , 2011 .

[22]  S. Palanisamy,et al.  Effects of coolant pressure on chip formation while turning Ti6Al4V alloy , 2009 .

[23]  P. Philbin,et al.  Characterisation of the wear behaviour of polycrystalline diamond (PCD) tools when machining wood-based composites , 2005 .

[24]  Martin Dix,et al.  Modeling of drilling assisted by cryogenic cooling for higher efficiency , 2014 .

[25]  V. Tagliaferri,et al.  Effect of drilling parameters on the finish and mechanical properties of GFRP composites , 1990 .

[27]  A Aramcharoen,et al.  An Experimental Investigation on Cryogenic Milling of Inconel 718 and its Sustainability Assessment , 2014 .

[28]  Stephen T. Newman,et al.  State-of-the-art cryogenic machining and processing , 2013, Int. J. Comput. Integr. Manuf..

[29]  Michael F. Zaeh,et al.  A thermal simulation model for laser-assisted milling , 2010 .

[30]  R Crafoord,et al.  Chip control in tube turning using a high-pressure water jet , 1999 .

[31]  Demeng Che,et al.  Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review , 2014 .

[32]  P. Withers,et al.  Minor cutting edge-workpiece interactions in drilling of an advanced nickel-based superalloy , 2009 .

[33]  Philip J. Withers,et al.  Turning of advanced Ni based alloys obtained via powder metallurgy route , 2006 .

[34]  Norihiko Narutaki,et al.  High-speed Machining of Inconel 718 with Ceramic Tools , 1993 .

[35]  Nabil Gindy,et al.  Broaching of Ti-6-4 – Detection of Workpiece Surface Anomalies on Dovetail Slots through Process Monitoring , 2005 .

[36]  M. Nicolescu,et al.  Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys: A Review , 2014 .

[37]  Z. Y. Wang,et al.  Cryogenic machining of hard-to-cut materials , 2000 .

[38]  A. Köpf,et al.  Diamond coated cutting tools for machining of non-ferrous metals and fibre reinforced polymers , 2006 .

[39]  D. P. Davies,et al.  The Effect Machining Processes can have on the Fatigue Life and Surface Integrity of Critical Helicopter Components , 2014 .

[40]  Gérard Poulachon,et al.  Wear Mechanisms of New Tool Materials for Ti-6AI-4V High Performance Machining , 2003 .

[41]  S. Koshimizu Ultrasonic Vibration-Assisted Cutting of Titanium Alloy , 2008 .

[42]  J. Davim,et al.  Tool wear in machining processes for composites , 2012 .

[43]  Liangchi Zhang,et al.  An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics , 2003 .

[44]  Helmi Attia,et al.  Characterization of the dry high speed drilling process of woven composites using Machinability Maps approach , 2009 .

[45]  Hong Hocheng,et al.  Reducing drilling-induced delamination in composite tube by magnetic colloid back-up , 2014 .

[46]  A. Jawaid,et al.  Tool wear characteristics in turning of titanium alloy Ti-6246 , 1999 .

[47]  Thomas Bergs,et al.  Cutting Tool Geometry for Plunge Milling–Process Optimization for a Stainless Steel , 2012 .

[48]  Z. G. Wang,et al.  High-speed milling of titanium alloys using binderless CBN tools , 2005 .

[49]  Franck Girot,et al.  Modeling and tool wear in drilling of CFRP , 2010 .

[50]  M. Bermingham,et al.  The effect of cutting speed and heat treatment on the fatigue life of Grade 5 and Grade 23 Ti–6Al–4V alloys , 2013 .

[51]  J. Ståhl,et al.  Analysis of Subsurface Microstructure and Residual Stresses in Machined Inconel 718 with PCBN and Al2O3-SiCw Tools , 2014 .

[52]  Ning He,et al.  Effect of Cryogenic Minimum Quantity Lubrication (CMQL) on Cutting Temperature and Tool Wear in High-Speed End Milling of Titanium Alloys , 2010 .

[53]  Hung-I Lin,et al.  Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy , 2007 .

[54]  J. Paulo Davim,et al.  Optimisation of surface roughness on turning fibre-reinforced plastics (FRPs) with diamond cutting tools , 2005 .

[55]  Wei Zhou,et al.  Influence of cutting speed on cutting force, flank temperature, and tool wear in end milling of Ti-6Al-4V alloy , 2014 .

[56]  M. Nouari,et al.  Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti–6Al–4V and Ti-555 , 2013 .

[57]  Jose Mathew,et al.  Investigations into the effect of geometry of a trepanning tool on thrust and torque during drilling of GFRP composites , 1999 .

[58]  Kate Fox,et al.  Process monitoring to assist the workpiece surface quality in machining , 2004 .

[59]  Dave Kim,et al.  Drilling process optimization for graphite/bismaleimide–titanium alloy stacks , 2004 .

[60]  Matthew S. Dargusch,et al.  New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V , 2011 .

[61]  I. S. Jawahir,et al.  Analysis of residual stresses induced by dry turning of difficult-to-machine materials , 2008 .

[62]  T. I. El-Wardany,et al.  Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses , 2004 .

[63]  O. P. Gandhi,et al.  Digraph and matrix methods for the machinability evaluation of work materials , 2002 .

[64]  A. Damir,et al.  Flow visualization and characterization for optimized MQL machining of composites , 2014 .

[65]  J Kaminski,et al.  Control of chip flow direction in high-pressure water jet-assisted orthogonal tube turning , 2000 .

[66]  Shane Y. Hong,et al.  Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V , 2001 .

[67]  Z. Pei,et al.  ROTARY ULTRASONIC MACHINING OF TITANIUM ALLOY: EFFECTS OF MACHINING VARIABLES , 2006 .

[68]  Peter Krajnik,et al.  Transitioning to sustainable production – part II: evaluation of sustainable machining technologies , 2010 .

[69]  J. S. Stewart,et al.  Failure characteristics of diamond-coated carbides in machining wood-based composites , 2003 .

[70]  Fritz Klocke,et al.  On high-speed turning of a third-generation gamma titanium aluminide , 2013 .

[71]  J. Paro,et al.  High-speed milling of advanced materials , 1996 .

[72]  W. König,et al.  Quality Definition and Assessment in Drilling of Fibre Reinforced Thermosets , 1989 .

[73]  David K. Aspinwall,et al.  Machinability and surface integrity of RR1000 nickel based superalloy , 2011 .

[74]  Muammer Nalbant,et al.  The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools , 2007 .

[75]  T. Schaarschmidt,et al.  Next Generation High Performance Cutting by Use of Carbon Dioxide as Cryogenics , 2014 .

[76]  D. Biermann,et al.  Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: Cooling with carbon dioxide snow , 2011 .

[77]  A. Moufki,et al.  A review of developments towards dry and high speed machining of Inconel 718 alloy , 2004 .

[78]  Hong Hocheng,et al.  Delamination reduction in drilling composite materials by active backup force , 2012 .

[79]  Gérard Poulachon,et al.  Tool-life and wear mechanisms of CBN tools in machining of Inconel 718 , 2007 .

[80]  Yuebin Guo,et al.  A comprehensive experimental study on surface integrity by end milling Ti―6Al―4V , 2009 .

[81]  Shane Y. Hong,et al.  New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V , 2001 .

[82]  Oda Yohei,et al.  5 Axis Mill Turn and Hybrid Machining for Advanced application , 2012 .

[83]  L. T. Harper,et al.  A study of an improved cutting mechanism of composite materials using novel design of diamond micro-core drills , 2015 .

[84]  James G. Harris,et al.  Parametric Investigation of Laser‐Assisted Machining of Commercially Pure Titanium , 2008 .

[85]  V. Ostaševičius,et al.  Study of Vibration Milling for Improving Surface Finish of Difficult-to-cut Materials , 2013 .

[86]  Yuebin Guo,et al.  Effect Tool Wear During End Milling on the Surface Integrity and Fatigue Life of Inconel 718 , 2014 .

[87]  Vadim V. Silberschmidt,et al.  Surface-roughness Improvement in Ultrasonically Assisted Turning , 2014 .

[88]  Y. K. Chou,et al.  Characterizations of nano-crystalline diamond coating cutting tools , 2007 .

[89]  D. Aspinwall,et al.  Surface integrity and fatigue life of turned gamma titanium aluminide , 1997 .

[90]  R. M'Saoubi,et al.  Machining Behaviour of Ti-6Al-4 V and Ti-5553 All0oys in Interrupted Cutting with PVD Coated Cemented carbide , 2012 .

[91]  Pedro J. Arrazola,et al.  Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools , 2010 .

[92]  Albert J. Shih,et al.  High-throughput drilling of titanium alloys , 2007 .

[93]  D. Ulutan,et al.  Machining induced surface integrity in titanium and nickel alloys: A review , 2011 .

[94]  Ekkard Brinksmeier,et al.  Drilling of Multi-Layer Composite Materials consisting of Carbon Fiber Reinforced Plastics (CFRP), Titanium and Aluminum Alloys , 2002 .

[95]  Álisson Rocha Machado,et al.  Evaluation of the performance of CBN tools when turning Ti-6Al-4V alloy with high pressure coolant supplies , 2005 .

[96]  David K. Aspinwall,et al.  The effect of machining on the fatigue strength of a gamma titanium aluminide intertmetallic alloy , 1999 .

[97]  Konrad Wegener,et al.  Comparison of Ground and Laser Machined Polycrystalline Diamond (PCD) Tools in Cutting Carbon Fiber Reinforced Plastics (CFRP) for Aircraft Structures , 2012 .

[98]  David K. Aspinwall,et al.  The influence of cutter orientation and workpiece angle on machinability when high-speed milling Inconel 718 under finishing conditions , 2007 .

[99]  Dave Kim,et al.  Influence of Consolidation Process on the Drilling Performance and Machinability of PIXA-M and PEEK Thermoplastic Composites , 2005 .

[100]  M. H. Attia,et al.  Characterization and optimization of orbital drilling of woven carbon fiber reinforced epoxy laminates , 2012 .

[101]  Álisson Rocha Machado,et al.  Tool life and wear mechanisms in high speed machining of Ti–6Al–4V alloy with PCD tools under various coolant pressures , 2013 .

[102]  L. N. López de Lacalle,et al.  Analysis of ultrasonic-assisted drilling of Ti6Al4V , 2009 .

[103]  A. Kumar,et al.  Machinability of glass fibre reinforced plastic (GFRP) composite using alumina-based ceramic cutting tools , 2011 .

[104]  Christopher Saldana,et al.  Enhancing material removal processes using modulation-assisted machining , 2011 .

[105]  J. Xie,et al.  Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool , 2013 .

[106]  Dragos Axinte,et al.  Some considerations on tool wear and workpiece surface quality of holes finished by reaming or milling in a nickel base superalloy , 2007 .

[107]  I. S. Jawahir,et al.  Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, MQL, and Flood-Cooled Machining , 2014 .

[108]  A. Jawaid,et al.  The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V , 2005 .

[109]  J. Paulo Davim,et al.  New machinability study of glass fibre reinforced plastics using polycrystalline diamond and cemented carbide (K15) tools , 2007 .

[110]  Ekkard Brinksmeier,et al.  Tool Wear Analyses in Low Frequency Vibration Assisted Drilling of CFRP/Ti6Al4V Stack Material☆ , 2014 .

[111]  Jan-Eric Ståhl,et al.  An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools , 2012 .

[112]  Michael D. Gilchrist,et al.  The performance of coated tungsten carbide drills when machining carbon fibre-reinforced epoxy composite materials , 2002 .

[113]  H. Attia,et al.  Laser assisted turning of Titanium Metal Matrix Composite , 2011 .

[114]  S. Smith,et al.  Update on high-speed milling dynamics. , 1990 .

[115]  Dragos Axinte,et al.  A critical analysis of effectiveness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations , 2008 .

[116]  Emmanuel O. Ezugwu,et al.  Finish Machining of Nickel-Base Inconel 718 Alloy with Coated Carbide Tool under Conventional and High-Pressure Coolant Supplies , 2005 .

[117]  Walter Lindolfo Weingaertner,et al.  Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant , 2006 .

[118]  A. Koplev,et al.  The Cutting Process, Chips and Cutting Forces in Machining CFRP , 1983 .

[119]  P. Dearnley,et al.  Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318 , 1986 .

[120]  Yongshou Liang,et al.  Surface Integrity and Fatigue Behavior for High-Speed Milling Ti–10V–2Fe–3Al Titanium Alloy , 2014, Journal of Failure Analysis and Prevention.

[121]  Herbert Schulz,et al.  High-Speed Machining , 1992 .

[122]  H. Singh,et al.  AN INVESTIGATION ON FLANK WEAR MECHANISM OF TUNGSTEN CARBIDE DRILLS DURING CONVENTIONAL AND MODULATION ASSISTED DRILLING , 2014 .

[123]  João Roberto Ferreira,et al.  Characteristics of carbon–carbon composite turning , 2001 .

[124]  Riaz Muhammad,et al.  Hot ultrasonically assisted turning of β-Ti alloy , 2012 .

[125]  Y. Shin,et al.  Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining , 2010 .

[126]  Rosemar Batista da Silva,et al.  Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies , 2007 .

[127]  Y. Shin,et al.  MICROSTRUCTURAL ANALYSIS AND MACHINABILITY IMPROVEMENT OF UDIMET 720 VIA CRYOGENIC MILLING , 2009 .

[128]  Fritz Klocke,et al.  Broaching of Inconel 718 with cemented carbide , 2013, Prod. Eng..

[129]  Berend Denkena,et al.  High-Performance Cutting of Micro Patterns , 2012 .

[130]  David Dornfeld,et al.  Drilling Burr Formation in Titanium Alloy, Ti-6AI-4V , 1999 .

[131]  Elso Kuljanić,et al.  Milling Titanium Compressor Blades with PCD Cutter , 1998 .

[132]  P. D. Brown,et al.  INVESTIGATION INTO THE CHARACTERISTICS OF WHITE LAYERS PRODUCED IN A NICKEL-BASED SUPERALLOY FROM DRILLING OPERATIONS , 2012 .

[133]  Berend Denkena,et al.  Cutting edge geometries , 2014 .

[134]  Keith Ridgway,et al.  The effect of tool edge preparation on tool life and workpiece surface integrity , 2004 .

[135]  Oscar Gonzalo,et al.  Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM) , 2013 .

[136]  Keith Ridgway,et al.  Tool life and surface integrity aspects when drilling and hole making in Inconel 718 , 2008 .

[137]  Mariano Marcos,et al.  Dry drilling of alloy Ti–6Al–4V , 2005 .

[138]  Matthew S. Dargusch,et al.  Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy , 2011 .

[139]  Jun Zhao,et al.  Cutting forces and tool failure in high-speed milling of titanium alloy TC21 with coated carbide tools , 2015 .

[140]  G. Sridhar,et al.  Edge Trimming of CFRP Composites with Diamond Coated Tools: Edge Wear and Surface Characteristics , 2002 .

[141]  David K. Aspinwall,et al.  Surface integrity of a high speed milled gamma titanium aluminide , 2001 .

[142]  E. Capello Workpiece damping and its effect on delamination damage in drilling thin composite laminates , 2004 .

[143]  Hong Hocheng,et al.  Effects of special drill bits on drilling-induced delamination of composite materials , 2006 .

[144]  H. Takeyama,et al.  Study on Machining of Titanium Alloys , 1983 .

[145]  Chung-Shin Chang,et al.  Turning of glass–fiber reinforced plastics materials with chamfered main cutting edge carbide tools , 2006 .

[146]  Berend Denkena,et al.  Effect of cutting edge preparation of coated tools on their performance in milling various materials , 2014 .

[147]  A. Pineau,et al.  Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites , 2004 .

[148]  M. A. Mannan,et al.  Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools , 2004 .

[149]  P. Withers,et al.  An evaluation of the evolution of workpiece surface integrity in hole making operations for a nickel-based superalloy , 2012 .

[150]  Yongho Jeon,et al.  Current research trend on laser assisted machining , 2012 .

[151]  Song Zhang,et al.  Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions , 2012 .

[152]  Christopher Saldana,et al.  Surface integrity analysis of machined Inconel 718 over multiple length scales , 2012 .

[153]  D. Axinte,et al.  Surface integrity of nickel-based alloys subjected to severe plastic deformation by abusive drilling , 2014 .

[154]  C. C. Tsao,et al.  Study on the effect of frequency tracing in ultrasonic-assisted drilling of titanium alloy , 2009 .

[155]  David K. Aspinwall,et al.  Cutting temperatures when ball nose end milling γ-TiAl intermetallic alloys , 2013 .

[156]  Hong Hocheng,et al.  Delamination During Drilling in Composite Laminates , 1990 .

[157]  P. Withers,et al.  The sensitivity of Ni-based superalloy to hole making operations: Influence of process parameters on subsurface damage and residual stress , 2009 .

[158]  B. Furet,et al.  Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 Titanium alloy under high-pressure water jet assistance , 2013 .

[159]  Yakup Yildiz,et al.  A review of cryogenic cooling in machining processes , 2008 .

[160]  Nabil Gindy,et al.  An example of selection of the cutting conditions in broaching of heat-resistant alloys based on cutting forces, surface roughness and tool wear , 2005 .

[161]  Wolfgang Hintze,et al.  Constant Depth Scoring of Fibre Reinforced Plastic Structures to Prevent Delamination , 2014 .

[162]  S. Ding,et al.  Experimental investigation of end milling of titanium alloys with polycrystalline diamond tools , 2014 .

[163]  Mahmudur Rahman,et al.  Binderless CBN tools, a breakthrough for machining titanium alloys , 2005 .

[164]  Nico Treurnicht,et al.  The performance of PCD tools in high-speed milling of Ti6Al4V , 2011 .

[165]  C. Ren,et al.  Experimental study on surface integrity of Ti-6Al-4V in high speed side milling , 2012 .

[166]  Ekkard Brinksmeier,et al.  Drilling of composites and resulting surface integrity , 2011 .

[167]  David K. Aspinwall,et al.  The effect of machined topography and integrity on fatigue life , 2004 .

[168]  Junxue Ren,et al.  Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy , 2013 .

[169]  Eckart Uhlmann,et al.  Wear behavior of HFCVD-diamond coated carbide and ceramic tools , 2000 .

[170]  Farhad Nabhani,et al.  Wear mechanisms of ultra-hard cutting tools materials , 2001 .

[171]  Hong Hocheng,et al.  Comprehensive analysis of delamination in drilling of composite materials with various drill bits , 2003 .

[172]  T. Obikawa,et al.  High speed MQL finish-turning of Inconel 718 with different coated tools , 2007 .

[173]  R. Boyer Attributes, characteristics, and applications of titanium and its alloys , 2010 .

[174]  F. Klocke,et al.  Thermo-Mechanical Tool Load during High Performance Cutting of Hard-to-Cut Materials , 2012 .

[175]  E. Uhlmann,et al.  Studies on the Conventional Machining of TiAl-Based Alloys , 2004 .

[176]  P. Arrazola,et al.  Machinability of titanium alloys (Ti6Al4V and Ti555.3) , 2009 .

[177]  Keith Ridgway,et al.  An analysis of the residual stresses generated in Inconel 718™ when turning , 2006 .

[178]  A. Erman Tekkaya,et al.  Hybrid processes in manufacturing , 2014 .

[179]  D. Paulonis,et al.  Alloy 718 at Pratt & Whitney: Historical Perspective and Future Challenges , 2001 .

[180]  Haslina Arshad,et al.  Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S , 2007 .

[181]  Jamal Y. Sheikh-Ahmad Machining of polymer composites , 2009 .

[182]  J. M. Longbottom,et al.  A review of research related to Salomon's hypothesis on cutting speeds and temperatures , 2006 .

[183]  Keith Ridgway,et al.  Surface integrity and tool life when turning Inconel 718 using ultra-high pressure and flood coolant systems , 2008 .

[184]  Ramaraja Bhat,et al.  Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834 , 2003 .

[185]  Helmi Attia,et al.  Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718 , 2010 .

[186]  Shih-Chieh Lin,et al.  Drilling carbon fiber-reinforced composite material at high speed , 1996 .

[187]  Fritz Klocke,et al.  Influence of a High-Pressure Lubricoolant Supply on Thermo-Mechanical Tool Load and Tool Wear Behaviour in the Turning of Aerospace Materials , 2011 .

[188]  Nabil Gindy,et al.  Tool condition monitoring in broaching , 2003 .

[189]  S. Rawat,et al.  Wear mechanisms and tool life management of WC–Co drills during dry high speed drilling of woven carbon fibre composites , 2009 .

[190]  Christian Brecher,et al.  Laser-assisted milling of advanced materials , 2010 .

[191]  XiaoQi Chen,et al.  An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts , 2006 .

[192]  H. Ando,et al.  Application of diamond-coated cutting tools , 1995 .

[193]  R. Kuppuswamy,et al.  Blend of sharpness and strength on a ball nose endmill geometry for high speed machining of Ti6Al4V , 2014 .

[194]  David K. Aspinwall,et al.  The Machining of ?-TiAI Intermetallic Alloys , 2005 .

[195]  A. F. Ismail,et al.  Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4V , 2007 .

[196]  R. Rentsch,et al.  u169 Crack Formation and Crack Path in CFRP Machining , 2013, CP 2013.

[197]  P. Withers,et al.  Influence of Surface Anomalies Following Hole Making Operations on the Fatigue Performance for a Nickel-Based Superalloy , 2014 .

[198]  D. Aspinwall,et al.  High speed ball nose end milling of γ-TiAl alloys , 2013 .

[199]  Mark Hardy,et al.  Modern Machining of Advanced Aerospace Alloys - Enabler for Quality and Performance , 2012 .

[200]  Keith Ridgway,et al.  The Effect of Cutting Tool Material and Edge Geometry on Tool Life and Workpiece Surface Integrity , 2006 .

[201]  D. Bhattacharyya,et al.  A study of hole drilling in Kevlar composites , 1998 .

[202]  D. Aspinwall,et al.  Tool wear/life evaluation when finish turning Inconel 718 using PCBN tooling , 2012 .

[203]  B. Turkovich,et al.  Tool wear in titanium machining , 1982 .

[204]  Stefania Rizzuti,et al.  Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide , 2012 .

[205]  I. El-Sonbaty,et al.  Factors affecting the machinability of GFR/epoxy composites , 2004 .

[206]  Uwe Heisel,et al.  Influence of Point Angle on Drill Hole Quality and Machining Forces When Drilling CFRP , 2012 .

[207]  Fritz Klocke,et al.  High Performance Machining of Profiled Slots in Nickel-Based-Superalloys , 2014 .

[208]  Kay André Weidenmann,et al.  Machining strategies for hole making in composites with minimal workpiece damage by directing the process forces inwards , 2011 .

[209]  Y. Changfeng,et al.  Effects of cutting parameters on surface residual stress and its mechanism in high-speed milling of TB6 , 2013 .

[210]  Vimal Dhokia,et al.  An Initial Study of the Effect of Using Liquid Nitrogen Coolant on the Surface Roughness of Inconel 718 Nickel-Based Alloy in CNC Milling , 2012 .

[211]  Thomas A. Dow,et al.  Review of vibration-assisted machining , 2008 .

[212]  Steven J. Skerlos,et al.  Rough turning Inconel 750 with supercritical CO2-based minimum quantity lubrication , 2014 .

[213]  P. Withers,et al.  Comparison of tool wear mechanisms and surface integrity for dry and wet micro-drilling of nickel-base superalloys , 2014 .

[214]  M. Nouari,et al.  Surface integrity of dry machined titanium alloys , 2009 .

[215]  Paolo C. Priarone,et al.  POLITECNICO DI TORINO Repository ISTITUZIONALE High performance cutting of gamma titanium aluminides : Influence of lubricoolant strategy on tool wear and surface integrity / , 2022 .

[216]  Klaus Weinert,et al.  Cutting Temperatures and Their Effects on the Machining Behaviour in Drilling Reinforced Plastic Composites , 2004 .

[217]  Peter Krajnik,et al.  Transitioning to sustainable production – Part I: application on machining technologies , 2010 .

[218]  A. Lamikiz,et al.  Design and Test of a Multitooth Tool for CFRP Milling , 2009 .

[219]  M. Ramulu,et al.  Machining and surface integrity of fibre-reinforced plastic composites , 1997 .

[220]  Christopher Saldana,et al.  Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling , 2012 .

[221]  J. Ghani,et al.  Surface integrity of Inconel 718 when finish turning with PVD coated carbide tool under MQL , 2011 .

[222]  M. Bermingham,et al.  A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti-6Al-4V cutting , 2012 .