Amplification of chirality in monodisperse, enantiopure alleno-acetylenic oligomers.

[1]  Jordan M Fletcher,et al.  Synthesis of stapled beta3-peptides through ring-closing metathesis. , 2009, Organic letters.

[2]  Ana G. Petrovic,et al.  Chiral induction from allenes into twisted 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs): conformational assignment by circular dichroism spectroscopy. , 2009, Chemistry.

[3]  A. A. Fokin,et al.  [123]Tetramantane: parent of a new family of sigma-helicenes. , 2009, Journal of the American Chemical Society.

[4]  Pablo Rivera-Fuentes,et al.  Ein enantiomerenreiner alleno‐acetylenischer Makrocyclus: Synthese und Interpretation seiner herausragenden chiroptischen Eigenschaften , 2009 .

[5]  F. Diederich,et al.  An enantiomerically pure alleno-acetylenic macrocycle: synthesis and rationalization of its outstanding chiroptical response. , 2009, Angewandte Chemie.

[6]  A. Navarro‐Vázquez,et al.  Chiral (2,5)pyrido[7(4)]allenoacetylenic cyclophanes: synthesis and characterization. , 2009, Chemistry.

[7]  Min Cheol Kim,et al.  Biased helical folding of chiral oligoindole foldamers. , 2008, Organic letters.

[8]  F. Diederich,et al.  1,3-Diethynylallenes (DEAs): enantioselective synthesis, absolute configuration, and chiral induction in 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs). , 2008, Chemistry.

[9]  R. Pascal,et al.  Configurationally stable longitudinally twisted polycyclic aromatic compounds. , 2008, Journal of the American Chemical Society.

[10]  E. Yashima,et al.  Sequence- and chain-length-specific complementary double-helix formation. , 2008, Journal of the American Chemical Society.

[11]  M. Yamaguchi,et al.  Hetero-double-helix formation by an ethynylhelicene oligomer possessing perfluorooctyl side chains. , 2008, The Journal of organic chemistry.

[12]  A. Batsanov,et al.  Carbon-rich molecules: synthesis and isolation of aryl/heteroaryl terminal bis(butadiynes) (HC[triple bond]C-C[triple bond]C-Ar-C[triple bond]C-C[triple bond]CH) and their applications in the synthesis of oligo(arylenebutadiynylene) molecular wires. , 2008, Organic & biomolecular chemistry.

[13]  G. Spada Induktion starker Circulardichroismuseffekte durch Ausrichtung achiraler selbstorganisierter Fasern in konvektiven und in Wirbelströmungen , 2008 .

[14]  G. Spada Alignment by the convective and vortex flow of achiral self-assembled fibers induces strong circular dichroism effects. , 2008, Angewandte Chemie.

[15]  M. Yamaguchi,et al.  Synthesis and structure of built-up organic macromolecules containing helicene. , 2008, Chemical record.

[16]  S. Grimme,et al.  Pseudohelical and helical primary structures of 1,2-spiroannelated four- and five-membered rings: syntheses and chiroptical properties. , 2007, The Journal of organic chemistry.

[17]  Jeffrey S. Moore,et al.  Foldamers Based on Solvophobic Effects , 2007 .

[18]  G. Guichard,et al.  Foldamers Based on Remote Intrastrand Interactions , 2007 .

[19]  N. Berova,et al.  Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. , 2007, Chemical Society reviews.

[20]  M. Fujiki Helix Generation, Amplification, Switching, and Memory of Chromophoric Polymers , 2007 .

[21]  E. Yashima,et al.  Dynamic Helical Structures: Detection and Amplification of Chirality , 2007 .

[22]  P. Schreiner,et al.  Syntheses and Properties of Enantiomerically Pure Higher (n ≥ 7) [n−2]Triangulanedimethanols and σ‐[n]Helicenes , 2006 .

[23]  P. Seiler,et al.  Aufbau formstabiler chiraler alleno‐acetylenischer Makrocyclen und Cyclophane über Acetylenkupplungen mit 1,3‐Diethinylallenen , 2005 .

[24]  F. Diederich,et al.  Shape-persistent chiral alleno-acetylenic macrocycles and cyclophanes by acetylenic scaffolding with 1,3-diethynylallenes. , 2005, Angewandte Chemie.

[25]  M. Borkovec,et al.  Strict self-assembly of polymetallic helicates: the concepts behind the semantics , 2005 .

[26]  R. Kamien,et al.  Entropically Driven Helix Formation , 2005, Science.

[27]  P. Schreiner,et al.  Ein konvergenter Zugang zu enantiomerenreinen höheren [n−2]Triangulandimethanol‐Derivaten und [n]Triangulanen (n≥7) , 2004 .

[28]  P. Schreiner,et al.  A convergent route to enantiomerically pure higher [n-2]triangulanedimethanol derivatives and [n]triangulanes (n>/=7). , 2004, Angewandte Chemie.

[29]  Hiroki Sugiura,et al.  Marked effect of aromatic solvent on unfolding rate of helical ethynylhelicene oligomer. , 2004, Journal of the American Chemical Society.

[30]  Stefan Grimme,et al.  Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  F. Diederich,et al.  1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional Acetylenic Scaffolding , 2002 .

[32]  Karina Sendt,et al.  Failure of density-functional theory and time-dependent density-functional theory for large extended π systems , 2002 .

[33]  Alexander Wittkopp,et al.  The first enantiomerically pure [n]triangulanes and analogues: sigma-[n]helicenes with remarkable features. , 2002, Chemistry.

[34]  Prasad L Polavarapu,et al.  Optical rotation: recent advances in determining the absolute configuration. , 2002, Chirality.

[35]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[36]  F. Diederich,et al.  1,3-Diethynylallenes: New Modules for Three-Dimensional Acetylenic Scaffolding. , 2001, Angewandte Chemie.

[37]  E. Vogel,et al.  Cyclooctapyrrole mit 8er‐Konformation: Enantiomerentrennung und Bestimmung der absoluten Konfiguration eines zweikernigen Metallkomplexes , 1999 .

[38]  Lex,et al.  "Figure Eight" Cyclooctapyrroles: Enantiomeric Separation and Determination of the Absolute Configuration of a Binuclear Metal Complex. , 1999, Angewandte Chemie.

[39]  P. Schreiner,et al.  Das erste enantiomerenreine Triangulan: (M)‐Trispiro[2.0.0.2.1.1]nonan ist ein σ‐[4]Helicen , 1999 .

[40]  Peter R. Schreiner,et al.  The First Enantiomerically Pure Triangulane (M)‐Trispiro[2.0.0.2.1.1]nonane Is a σ‐[4]Helicene , 1999 .

[41]  Jonathan V Selinger,et al.  Die makromolekulare Route zur Chiralitätsverstärkung , 1999 .

[42]  Sato,et al.  The Macromolecular Route to Chiral Amplification. , 1999, Angewandte Chemie.

[43]  G. Werner,et al.  Organische Nitrate des Isoprens als atmosphärische Spurenstoffe , 1999 .

[44]  Helen E Blackwell,et al.  Highly Efficient Synthesis of Covalently Cross-Linked Peptide Helices by Ring-Closing Metathesis. , 1998, Angewandte Chemie.

[45]  R. H. Grubbs,et al.  Die Ringschluß‐Olefin‐Metathese als hocheffiziente Methode zur Synthese kovalent querverbrückter Peptide , 1998 .

[46]  H. Langhals,et al.  Cyclophanes as Model Compounds for Permanent, Dynamic Aggregates – Induced Chirality with Strong CD Effects , 1998 .

[47]  M. Sisido,et al.  Optically Active Poly(aryl carbonates) Consisting of Axially Chiral Units. Chiral Binaphthyl Group Induced Helical Polymer , 1998 .

[48]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[49]  Chao‐Jun Li,et al.  A chiral conjugated oligomer based on 1,1′-binaphthol with 3,3′-acetylene spacer , 1997 .

[50]  H. Langhals,et al.  Chiral Bifluorophoric Perylene Dyes with Unusually High CD Effects – a Simple Model for the Photosynthesis Reaction Center , 1997 .

[51]  P. Wipf,et al.  Synthetic and model computational studies of molar rotation additivity for interacting chiral centers: a reinvestigation of van't Hoff's principle. , 1997, Chirality.

[52]  G. Wulff,et al.  Occurrence of strong circular dichroism during measurement of CD spectra due to intramolecular cyclization , 1994 .

[53]  R. Rossi,et al.  A palladium-promoted route to 3-alkyl-4-(1-alkynyl)hexa-1,5-dyn-3-enes and/or 1,3-diynes , 1985 .

[54]  M. Goodman,et al.  Conformational aspects of polypeptide structure XVI. Rotatory constants, cotton effects, and ultraviolet absorption data for glutamate oligomers and co‐oligomers , 1964 .