Construction of quadrilateral subdivision surfaces with prescribed G1 boundary conditions

We present a scheme that combines the subdivision technique and the geometric partial differential equations method which provides us an efficient algorithm for designing high-quality surfaces with arbitrary topology structure. We use several fourth-order geometric partial differential equations to construct Catmull-Clark's subdivision surfaces with prescribed G^1 boundary conditions where a mixed finite element method is based on the modified Catmull-Clark's subdivision scheme. Our approach can uniformly handle surface construction both with specified boundary normals and with interior sharp edges, which is a powerful tool for designing the shape of surfaces.

[1]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[2]  Ahmad H. Nasri,et al.  Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.

[3]  Jean-Philippe Pons,et al.  Generalized Surface Flows for Mesh Processing , 2007 .

[4]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[5]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[6]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  James McCoy,et al.  The surface area preserving mean curvature flow , 2003 .

[9]  Guoliang Xu,et al.  Construction of Subdivision Surfaces by Fourth-Order Geometric Flows with G1 Boundary Conditions , 2010, GMP.

[10]  Ahmad H. Nasri,et al.  Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..

[11]  Dan Liu,et al.  A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes , 2008, Comput. Math. Appl..

[12]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[13]  Guillermo Sapiro,et al.  Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  W. Mullins Two‐Dimensional Motion of Idealized Grain Boundaries , 1956 .

[15]  Martin Rumpf,et al.  A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..

[16]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[17]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[18]  C. Bajaj,et al.  Anisotropic Diffusion of Subdivision Surfaces and Functions on Surfaces , 2001 .

[19]  E. Kuwert,et al.  Gradient flow for the Willmore functional , 2002 .

[20]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[21]  Guoliang Xu,et al.  G2 surface modeling using minimal mean-curvature-variation flow , 2007, Comput. Aided Des..

[22]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[23]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[24]  Guoliang Xu,et al.  Construction of Minimal Catmull-Clark's Subdivision Surfaces with Given Boundaries , 2010, GMP.

[25]  K. Schweizerhof,et al.  Iterative mesh generation for FE‐computations on free form surfaces , 1997 .