The Singular Complement Method

The philosophy of the SCM is different, although the tools are similar: the idea is still to split the space , but with respect to regularity. Indeed, elements of belong to the scale of Sobolev spaces 576 98 , or 5:6 ;8 =< , where 8?>A@ < is the computational domain, and BC @ED . Interestingly, for a given space , the supremum B FEG H of all possible values of the exponent B , depends on the convexity of the domain and on the smoothness of its boundary. Let BEI be the supremum when the domain is convex, or smooth. When the domain is non-convex and non-smooth, B FEG HKJLBMI usually holds. Then, let )N7 O P15Q6SR 98 (or )NT P15Q6SR ;8 =< for vector fields) be the space of regular elements. Assume that UN is closed in , and let O N V UW (4)

[1]  Franck Assous,et al.  Theoretical tools to solve the axisymmetric Maxwell equations , 2002 .

[2]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[3]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[4]  M. Sh. Birman,et al.  Construction in a piecewise smooth domain of a function of the class H2 from the value of the conormal derivative , 1990 .

[5]  F. Hermeline,et al.  Two Coupled Particle-Finite Volume Methods Using Delaunay-Voronoı Meshes for the Approximation of Vlasov-Poisson and Vlasov-Maxwell Equations , 1993 .

[6]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[7]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[8]  Franck Assous,et al.  Numerical Solution to the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domains , 2000 .

[9]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[10]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[11]  Susanne C. Brenner,et al.  Overcoming Corner Singularities Using Multigrid Methods , 1998 .

[12]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[13]  Franck Assous,et al.  Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .

[14]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[15]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[16]  Jun Zou,et al.  Finite element convergence for the Darwin model to Maxwell's equations , 1997 .

[17]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[18]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[19]  Franck Assous,et al.  Characterization of the Singular Part of the Solution of Maxwell's Equations in a Polyhedral Domain , 1999 .

[20]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[21]  P. Ciarlet,et al.  Solution of axisymmetric Maxwell equations , 2003 .

[22]  P. Werner,et al.  A local compactness theorem for Maxwell's equations , 1980 .

[23]  E. Sonnendrücker,et al.  Resolution of the Maxwell equations in a domain with reentrant corners , 1998 .

[24]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[25]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[26]  Pierre Degond,et al.  On a finite-element method for solving the three-dimensional Maxwell equations , 1993 .

[27]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[28]  M. Z. Solomyak,et al.  Maxwell operator in regions with nonsmooth boundaries , 1987 .

[29]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[30]  M. Costabel,et al.  Maxwell and Lamé eigenvalues on polyhedra , 1999 .

[31]  M. A. Moussaoui,et al.  Sur l'approximation des solutions du probleme de Dirichlet dans un ouvert avec coins , 1985 .

[32]  H. Langtangen,et al.  Mixed Finite Elements , 2003 .