The Singular Complement Method
暂无分享,去创建一个
[1] Franck Assous,et al. Theoretical tools to solve the axisymmetric Maxwell equations , 2002 .
[2] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[3] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[4] M. Sh. Birman,et al. Construction in a piecewise smooth domain of a function of the class H2 from the value of the conormal derivative , 1990 .
[5] F. Hermeline,et al. Two Coupled Particle-Finite Volume Methods Using Delaunay-Voronoı Meshes for the Approximation of Vlasov-Poisson and Vlasov-Maxwell Equations , 1993 .
[6] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .
[7] Christophe Hazard,et al. On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .
[8] Franck Assous,et al. Numerical Solution to the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domains , 2000 .
[9] William W. Hager,et al. Updating the Inverse of a Matrix , 1989, SIAM Rev..
[10] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[11] Susanne C. Brenner,et al. Overcoming Corner Singularities Using Multigrid Methods , 1998 .
[12] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[13] Franck Assous,et al. Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .
[14] M. Costabel,et al. Singularities of Maxwell interface problems , 1999 .
[15] Christophe Hazard,et al. A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..
[16] Jun Zou,et al. Finite element convergence for the Darwin model to Maxwell's equations , 1997 .
[17] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .
[18] M. Dauge. Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .
[19] Franck Assous,et al. Characterization of the Singular Part of the Solution of Maxwell's Equations in a Polyhedral Domain , 1999 .
[20] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[21] P. Ciarlet,et al. Solution of axisymmetric Maxwell equations , 2003 .
[22] P. Werner,et al. A local compactness theorem for Maxwell's equations , 1980 .
[23] E. Sonnendrücker,et al. Resolution of the Maxwell equations in a domain with reentrant corners , 1998 .
[24] M. Costabel. A coercive bilinear form for Maxwell's equations , 1991 .
[25] Monique Dauge,et al. Spectral Methods for Axisymmetric Domains , 1999 .
[26] Pierre Degond,et al. On a finite-element method for solving the three-dimensional Maxwell equations , 1993 .
[27] L. Wahlbin,et al. Local behavior in finite element methods , 1991 .
[28] M. Z. Solomyak,et al. Maxwell operator in regions with nonsmooth boundaries , 1987 .
[29] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[30] M. Costabel,et al. Maxwell and Lamé eigenvalues on polyhedra , 1999 .
[31] M. A. Moussaoui,et al. Sur l'approximation des solutions du probleme de Dirichlet dans un ouvert avec coins , 1985 .
[32] H. Langtangen,et al. Mixed Finite Elements , 2003 .