Predictive Kinetics: A New Approach for the 21st Century

The capability to reliably predict the behavior of reactive chemical systems would allow rational a priori design of chemical reaction systems. Recent progress toward overcoming several technical obstacles to predictive kinetics for homogeneous gas-phase systems is reviewed. The focus is on (1) updates to the fundamental data model used in kinetic modeling, (2) methods for solving large kinetic simulations efficiently without relying on uncontrolled approximations, and (3) methods for determining whether or not the model predictions are consistent with experimental data. Appropriate handling and archiving of experimental data from different sources, and of the many uncertainties in the data embedded throughout the kinetic models, is a major challenge facing the kinetics community as kinetics becomes a predictive science.

[1]  Nancy J. Brown,et al.  First- and Second-Order Sensitivity Analysis of a Photochemically Reactive System (a Green's Function Approach) , 1997 .

[2]  Stephen E. Stein,et al.  Examination of approximations to hindered internal rotation in the calculation of energy level sums , 1974 .

[3]  Takahiro Yamada,et al.  Thermodynamic Parameters and Group Additivity Ring Corrections for Three- to Six-Membered Oxygen Heterocyclic Hydrocarbons , 1997 .

[4]  Paul I. Barton,et al.  Large-Scale Dynamic Optimization Using the Directional Second-Order Adjoint Method , 2005 .

[5]  L. Petzold,et al.  Numerical methods and software for sensitivity analysis of differential-algebraic systems , 1986 .

[6]  William H Green,et al.  Accurate and efficient method for predicting thermochemistry of polycyclic aromatic hydrocarbons - bond-centered group additivity. , 2004, Journal of the American Chemical Society.

[7]  Warren E. Stewart,et al.  Sensitivity analysis of initial-boundary-value problems with mixed PDEs and algebraic equations: applications to chemical and biochemical systems , 1995 .

[8]  Nicholas P. Cernansky,et al.  Oxidation of n-butane : transition in the mechanism across the region of negative temperature coefficient , 1995 .

[9]  F. P. Di Maio,et al.  KING, a KInetic Network Generator , 1992 .

[10]  Tamás Turányi,et al.  Chapter 4 Mathematical tools for the construction, investigation and reduction of combustion mechanisms , 1997 .

[11]  Neil Shenvi,et al.  Nonlinear Kinetic Parameter Identification through Map Inversion , 2002 .

[12]  Tiziano Faravelli,et al.  Low-temperature combustion: Automatic generation of primary oxidation reactions and lumping procedures , 1995 .

[13]  David M. Matheu,et al.  A systematically generated, pressure-dependent mechanism for high-conversion ethane pyrolysis. 1. Pathways to the minor products. , 2005, The journal of physical chemistry. A.

[14]  William H. Green,et al.  An adaptive chemistry approach to modeling complex kinetics in reacting flows , 2003 .

[15]  Anthony M. Dean,et al.  MOLECULAR DENSITY OF STATES FROM ESTIMATED VAPOR PHASE HEAT CAPACITIES , 1997 .

[16]  Marianthi G. Ierapetritou,et al.  Design of flexible reduced kinetic mechanisms , 2001 .

[17]  Pierre-Alexandre Glaude,et al.  Modeling the oxidation of mixtures of primary reference automobile fuels , 2002 .

[18]  G. Froment,et al.  Computer generation of reaction schemes and rate equations for thermal cracking , 1988 .

[19]  Herschel Rabitz,et al.  Optimal identification of biochemical reaction networks. , 2004, Biophysical journal.

[20]  D. C. Tardy,et al.  Theory of Unimolecular Reactions , 1973 .

[21]  Peter B. Ayscough,et al.  An expert system for hydrocarbon pyrolysis reactions , 1988 .

[22]  Edward S. Blurock,et al.  Reaction: System for Modeling Chemical Reactions , 1995, J. Chem. Inf. Comput. Sci..

[23]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[24]  C. W. Gear,et al.  The automatic integration of ordinary differential equations , 1971, Commun. ACM.

[25]  William H. Green,et al.  PREDICTION OF PERFORMANCE MAPS FOR HOMOGENEOUS-CHARGE COMPRESSION-IGNITION ENGINES , 2004 .

[26]  Pierre-Alexandre Glaude,et al.  Computer Based Generation of Reaction Mechanisms for Gas-phase Oxidation , 2000, Comput. Chem..

[27]  William H. Green,et al.  Capturing pressure‐dependence in automated mechanism generation: Reactions through cycloalkyl intermediates , 2003 .

[28]  Herschel Rabitz,et al.  Global uncertainty assessments by high dimensional model representations (HDMR) , 2002 .

[29]  B. Bennett,et al.  Computational and experimental study of axisymmetric coflow partially premixed methane/air flames , 2000 .

[30]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[31]  Anthony M. Dean,et al.  HYDROGEN ATOM BOND INCREMENTS FOR CALCULATION OF THERMODYNAMIC PROPERTIES OF HYDROCARBON RADICAL SPECIES , 1995 .

[32]  Edward S. Blurock,et al.  Detailed Mechanism Generation. 2. Aldehydes, Ketones, and Olefins , 2004, J. Chem. Inf. Model..

[33]  B. C. Garrett,et al.  Current status of transition-state theory , 1983 .

[34]  Michael Frenklach,et al.  PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics , 1998 .

[35]  Kevin Van Geem,et al.  Automatic reaction network generation using RMG for steam cracking of n‐hexane , 2006 .

[36]  George Stephanopoulos,et al.  Valid parameter range analyses for chemical reaction kinetic models , 2002 .

[37]  Anthony M. Dean,et al.  Parameterization of pressure‐ and temperature‐dependent kinetics in multiple well reactions , 1997 .

[38]  William H. Green,et al.  Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis , 2003 .

[39]  Anthony M. Dean,et al.  Kinetic Analysis of Complex Chemical Activation and Unimolecular Dissociation Reactions using QRRK Theory and the Modified Strong Collision Approximation , 2000 .

[40]  Michael L. Mavrovouniotis,et al.  Construction of complex reaction systems—II. Molecule manipulation and reaction application algorithms , 1997 .

[41]  Jefferson W. Tester,et al.  Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .

[42]  Paul I. Barton,et al.  Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms , 2003 .

[43]  R. J. Quann,et al.  Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures , 1992 .

[44]  Edward R. Ritter,et al.  THERM: THERMODYNAMIC PROPERTY ESTIMATION FOR GAS PHASE RADICALS and MOLECULES , 1991, Proceeding of Data For Discovery.

[45]  Eliseo Ranzi,et al.  Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO) , 1979 .

[46]  Pierre-Alexandre Glaude,et al.  Modeling of the gas-phase oxidation of cyclohexane , 2006 .

[47]  S. Stein,et al.  Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors , 1973 .

[48]  Paul I. Barton,et al.  Global Optimization with Nonlinear Ordinary Differential Equations , 2006, J. Glob. Optim..

[49]  Joseph W. Bozzelli,et al.  Enthalpies of formation of cyclic alkyl peroxides: dioxirane, 1,2-dioxetane, 1,2-dioxolane, and 1,2-dioxane , 1997 .

[50]  P. I. Barton,et al.  DAEPACK: An Open Modeling Environment for Legacy Models , 2000 .

[51]  William H. Green,et al.  Rate-Based Construction of Kinetic Models for Complex Systems , 1997 .

[52]  Ryan Feeley,et al.  Consistency of a Reaction Dataset , 2004 .

[53]  Paul I. Barton,et al.  Obtaining accurate solutions using reduced chemical kinetic models: a new model reduction method for models rigorously validated over ranges , 2007 .

[54]  Anthony M. Dean,et al.  Predictions of pressure and temperature effects upon radical addition and recombination reactions , 1985 .

[55]  Joseph W. Bozzelli,et al.  Enthalpies of Formation and Group Additivity of Alkyl Peroxides and Trioxides , 1997 .

[56]  Linda J. Broadbelt,et al.  Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates , 1994 .

[57]  J.-Y. Chen,et al.  A General Procedure for Constructing Reduced Reaction Mechanisms with Given Independent Relations , 1988 .

[58]  J. Warnatz,et al.  Automatic generation of reaction mechanisms for the description of the oxidation of higher hydrocarbons , 1990 .

[59]  L. Moskaleva,et al.  The spin-conserved reaction CH+N2→H+NCN: A major pathway to prompt no studied by quantum/statistical theory calculations and kinetic modeling of rate constant , 2000 .

[60]  Young K. Park,et al.  Construction and optimization of complex surface‐reaction mechanisms , 2000 .

[61]  Michael L. Mavrovouniotis,et al.  Construction of complex reaction systems—I. Reaction description language , 1997 .

[62]  Kaizar Amin,et al.  Introduction to Active Thermochemical Tables: Several “Key” Enthalpies of Formation Revisited† , 2004 .

[63]  Edward S. Blurock,et al.  Detailed Mechanism Generation. 1. Generalized Reactive Properties as Reaction Class Substructures , 2004, J. Chem. Inf. Model..

[64]  S. K. Lee,et al.  The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition , 2004, Science.

[65]  Michael Frenklach,et al.  Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .

[66]  Mark D. Allendorf,et al.  Bond additivity corrections for quantum chemistry methods , 2000 .

[67]  Thanh N. Truong,et al.  Automated mechanism generation: From symbolic calculation to complex chemistry , 2006 .

[68]  Michael R. Zachariah,et al.  Bond-Additivity Correction of Ab Initio Computations for Accurate Prediction of Thermochemistry , 1998 .

[69]  C. Taatjes,et al.  Uncovering the fundamental chemistry of alkyl + O2 reactions via measurements of product formation. , 2006, The journal of physical chemistry. A.

[70]  Viriato Semiao,et al.  A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry , 2003 .

[71]  Michael L. Mavrovouniotis,et al.  Construction of complex reaction systems—III. An example: alkylation of olefins , 1997 .

[72]  Shinji Kojima,et al.  Detailed modeling of n-butane autoignition chemistry , 1994 .

[73]  Paul I. Barton,et al.  On upgrading the numerics in combustion chemistry codes , 2002 .

[74]  Jana B. Milford,et al.  Use of sensitivity analysis to compare chemical mechanisms for air-quality modeling , 1992 .

[75]  P. I. Barton,et al.  Rigorous valid ranges for optimally reduced kinetic models , 2006 .

[76]  N. Peters,et al.  Reduced Kinetic Mechanisms for Applications in Combustion Systems , 1993 .

[77]  David M. Matheu,et al.  A systematically generated, pressure-dependent mechanism for high-conversion ethane pyrolysis. 2. Radical disproportionations, missing reaction families, and the consequences of pressure dependence. , 2005, The journal of physical chemistry. A.