Sensitivity Analysis for Two-Level Value Functions with Applications to Bilevel Programming

This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization called the optimistic bilevel problem and its initial more difficult formulation that we call here the original optimistic bilevel optimization problem. It follows from this research that although the process of deriving necessary optimality conditions for the latter problem is more involved, the conditions themselves do not---to a large extent---differ from those known for the conventional problem. It has already been well recognized in the literature that for optimality conditions of the usual optimistic bilevel program appropriate coderivative constructions for the set-valued solution map of the lower-level problem could be used, while it is shown in this paper that for the original optimistic formulation we have to go a step further to require and justify a certain Lipschitz-like property of this map. This is related to the local Lipschitz continuity of the optimal value funct...

[1]  ScheelHolger,et al.  Mathematical Programs with Complementarity Constraints , 2000 .

[2]  Stephan Dempe,et al.  The bilevel programming problem: reformulations, constraint qualifications and optimality conditions , 2013, Math. Program..

[3]  Christian Kanzow,et al.  A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints , 2006 .

[4]  Jane J. Ye,et al.  New Uniform Parametric Error Bounds , 1998 .

[5]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[6]  Boris S. Mordukhovich,et al.  Subdifferentials of value functions and optimality conditions for DC and bilevel infinite and semi-infinite programs , 2010, Math. Program..

[7]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[8]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[9]  J. V. Outrata,et al.  Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case , 1999, Kybernetika.

[10]  Boris S. Mordukhovich,et al.  Subgradients of marginal functions in parametric mathematical programming , 2008, Math. Program..

[11]  Samarathunga M. Dassanayaka Methods Of Variational Analysis In Pessimistic Bilevel Programming , 2010 .

[12]  Jiří V. Outrata,et al.  Optimality Conditions for Disjunctive Programs with Application to Mathematical Programs with Equilibrium Constraints , 2007 .

[13]  Stephan Dempe,et al.  Optimality Conditions for a Simple Convex Bilevel Programming Problem , 2010 .

[14]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[15]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[16]  W. E Schmitendorf A simple derivation of necessary conditions for static minmax problems , 1979 .

[17]  Jirí V. Outrata,et al.  On the computation of relaxed pessimistic solutions to MPECs , 2013, Optim. Methods Softw..

[18]  Jiří V. Outrata,et al.  Exact penalty results for mathematical programs with vanishing constraints , 2010 .

[19]  Jane J. Ye,et al.  Optimality Conditions for Optimization Problems with Complementarity Constraints , 1999, SIAM J. Optim..

[20]  Boris S. Mordukhovich,et al.  Variational Analysis of Marginal Functions with Applications to Bilevel Programming , 2012, J. Optim. Theory Appl..

[21]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[22]  R. Tyrrell Rockafellar,et al.  Marginal values and second-order necessary conditions for optimality , 1983, Math. Program..

[23]  Shu Lu,et al.  Implications of the constant rank constraint qualification , 2011, Math. Program..

[24]  Christian Kanzow,et al.  Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications , 2008, Math. Program..

[25]  Boris S. Mordukhovich,et al.  Variational Stability and Marginal Functions via Generalized Differentiation , 2005, Math. Oper. Res..

[26]  Stephan Dempe,et al.  The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs , 2011, J. Optim. Theory Appl..

[27]  J. Gauvin,et al.  Differential properties of the marginal function in mathematical programming , 1982 .

[28]  R. Henrion,et al.  A Subdifferential Condition for Calmness of Multifunctions , 2001 .

[29]  R. Henrion,et al.  On the co-derivative of normal cone mappings to inequality systems ☆ , 2009 .

[30]  Anthony V. Fiacco,et al.  Introduction to Sensitivity and Stability Analysis in Nonlinear Programming , 2012 .

[31]  N. D. Yen,et al.  Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming , 2006 .

[32]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[33]  B. Mordukhovich Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .

[34]  Boris Polyak,et al.  B.S. Mordukhovich. Variational Analysis and Generalized Differentiation. I. Basic Theory, II. Applications , 2009 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Aparna Mehra,et al.  Approximate optimality conditions for minimax programming problems , 2010 .

[37]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[38]  R. Henrion,et al.  On calmness conditions in convex bilevel programming , 2011 .

[39]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[40]  B. Mordukhovich Maximum principle in the problem of time optimal response with nonsmooth constraints PMM vol. 40, n≗ 6, 1976, pp. 1014-1023 , 1976 .

[41]  Daniel Ralph,et al.  A note on sensitivity of value functions of mathematical programs with complementarity constraints , 2002, Math. Program..

[42]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[43]  Stephan Dempe,et al.  On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem , 2010 .

[44]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[45]  W. Marsden I and J , 2012 .

[46]  B. Mordukhovich,et al.  New necessary optimality conditions in optimistic bilevel programming , 2007 .

[47]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[48]  Jirí Vladimír Outrata,et al.  On the numerical solution of a class of Stackelberg problems , 1990, ZOR Methods Model. Oper. Res..

[49]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[50]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[51]  Alain B. Zemkoho,et al.  Necessary optimality conditions in pessimistic bilevel programming , 2014 .

[52]  Michael C. Ferris,et al.  Weak sharp minima and penalty functions in mathematical programming , 1988 .

[53]  Jane J. Ye,et al.  New Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches , 2010, SIAM J. Optim..

[54]  Jane J. Ye,et al.  Sensitivity Analysis of the Value Function for Optimization Problems with Variational Inequality Constraints , 2001, SIAM J. Control. Optim..

[55]  BORIS S. MORDUKHOVICH,et al.  Coderivative Analysis of Quasi-variational Inequalities with Applications to Stability and Optimization , 2007, SIAM J. Optim..

[56]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[57]  Stephan Dempe,et al.  Bilevel programming with convex lower level problems , 2006 .

[58]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[59]  Jane J. Ye,et al.  Nondifferentiable Multiplier Rules for Optimization and Bilevel Optimization Problems , 2004, SIAM J. Optim..