Second-order inelastic analysis of composite framed structures based on the refined plastic hinge method

Abstract Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. The refined plastic hinge approach models the elasto-gradual-plastic material non-linearity with strain-hardening under the interaction of bending and axial actions. This produces a benign method for a beam–column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. Following development of the theory, its application is illustrated with a number of varied examples.

[1]  Mark A. Bradford,et al.  Composite Steel and Concrete Structural Members: Fundamental Behaviour , 1995 .

[2]  R Q Bridge Concrete filled steel tubular columns , 1976 .

[3]  R. H. Mallett,et al.  Finite Element Analysis of Nonlinear Structures , 1968 .

[4]  C. K. Iu Inelastic finite element analysis of composite beams on the basis of the plastic hinge approach , 2008 .

[5]  Gregory G. Deierlein,et al.  Evaluation of ACI 318 and AISC (LRFD) strength provisions for composite beam-columns , 1995 .

[6]  Mark A. Bradford,et al.  Slenderness limits for filled circular steel tubes , 2002 .

[7]  Jerome F. Hajjar,et al.  A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip , 1998 .

[8]  J. Z. Zhu,et al.  The finite element method , 1977 .

[9]  Robert Park,et al.  Strength of Concrete Filled Steel Tubular Columns , 1969 .

[10]  Donald W. White,et al.  Second‐Order Inelastic Analysis Methods for Steel‐Frame Design , 1992 .

[11]  Mark A. Bradford,et al.  Second Order Nonlinear Inelastic Analysis of Composite Steel–Concrete Members. I: Theory , 2006 .

[12]  Hong Chen,et al.  Spread-of-plasticity analysis of three-dimensional steel frames , 2002 .

[13]  Mark A. Bradford,et al.  ANALYSIS OF CIRCULAR RC COLUMNS FOR SHORT- AND LONG-TERM DEFORMATIONS , 1992 .

[14]  M. A. Bradford Shrinkage and creep response of slender reinforced concrete columns under moment gradient: theory and test results , 2005 .

[15]  N. E. Shanmugam,et al.  Inelastic analysis of steel frames with composite beams , 2001 .

[16]  Gianluca Cusatis,et al.  Capacity of Rectangular Cross Sections under Biaxially Eccentric Loads , 2008 .

[17]  John L. Meek,et al.  Ultimate Strength of Columns with Biaxially Eccentric Loads , 1963 .

[18]  Stephen P. Schneider,et al.  Axially Loaded Concrete-Filled Steel Tubes , 1998 .

[19]  Richard W. Furlong,et al.  Ultimate Strength of Square Columns Under Biaxially Eccentric Loads , 1961 .

[20]  Sher Ali Mirza,et al.  Statistical Analysis of Slender Composite Beam‐Column Strength , 1992 .

[21]  C. K. Iu,et al.  A simulation-based large deflection and inelastic analysis of steel frames under fire , 2004 .

[22]  S. L. Chan,et al.  INELASTIC AND STABILITY ANALYSIS OF FLEXIBLY CONNECTED STEEL FRAMES BY SPRINGS-IN-SERIES MODEL , 1994 .

[23]  J. L. Meek,et al.  Geometrically nonlinear analysis of space frames by an incremental iterative technique , 1984 .

[24]  Ks Virdi,et al.  THE ULTIMATE STRENGTH OF COMPOSITE COLUMNS IN BIAXIAL BENDING. , 1973 .

[25]  Mark A. Bradford,et al.  Second Order Nonlinear Inelastic Analysis of Composite Steel-Concrete Members. II: Applications , 2006 .

[26]  John F. Abel,et al.  Yield surface applications in nonlinear steel frame analysis , 1982 .

[27]  K. F. Chung,et al.  Composite column design to Eurocode 4 : based on DD ENV 1994-1-1: 1994 Eurocode 4: design of composite steel and concrete structures: part 1.1: general rules and rules for buildings , 1994 .

[28]  R. Wen,et al.  Nonlinear Elastic Frame Analysis by Finite Element , 1983 .

[29]  Brian Uy,et al.  Strength of concrete filled steel box columns incorporating local buckling , 2000 .

[30]  Jerome F. Hajjar,et al.  Representation of Concrete-Filled Steel Tube Cross-Section Strength , 1996 .

[31]  Mark A. Bradford,et al.  A reliable numerical method for simulating the post failure behaviour of concrete frame structures , 1994 .

[32]  W. F. Chen,et al.  Improved nonlinear plastic hinge analysis of space frame structures , 2000 .

[33]  Sritawat Kitipornchai,et al.  Geometric nonlinear analysis of asymmetric thin-walled beam-columns , 1987 .

[34]  Masahide Tomii,et al.  Experimental Studies on Concrete-Filled Steel Tubular Stub Columns under Concentric Loading , 1977 .

[35]  Brian Uy,et al.  Strength of short concrete filled high strength steel box columns , 2001 .