Mathematical modelling of pulverized coal furnaces

The goal of this paper is to show how mathematics and computational science can help to design not only the geometry but also the operation conditions of different parts of a pulverized coal power plant.

[1]  Alfredo Bermúdez,et al.  The modelling of the generation of volatiles, H2 and CO, and their simultaneous diffusion controlled oxidation, in pulverized coal furnaces , 2007 .

[2]  P. Libby,et al.  Theoretical study of burning carbon particles , 1979 .

[3]  C. R. Ethier,et al.  An efficient characteristic Galerkin scheme for the advection equation in 3-D , 2002 .

[4]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[5]  George Bergeles,et al.  Discrete-phase effects on the flow field of a droplet-laden swirling jet with recirculation: A numerical study , 1992 .

[6]  K. Kuo Principles of combustion , 1986 .

[7]  Amable Liñán Martínez Theory of droplet vaporization and combustion , 1985 .

[8]  Chung King Law,et al.  Quasi-steady and transient combustion of a carbon particle: Theory and experimental comparisons , 1988 .

[9]  A. Gosman,et al.  Aspects of Computer Simulation of Liquid-Fueled Combustors , 1983 .

[10]  Alfredo Bermúdez de Castro y López-Varela,et al.  Análisis de un método de flujos para el cálculo de la radiación térmica , 1991 .

[11]  Paul A. Libby,et al.  Ignition, combustion, and extinction of carbon particles , 1980 .

[12]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[13]  L. D. Smoot,et al.  Pulverized-coal combustion and gasification , 1979 .

[14]  M. Matalon Complete Burning and Extinction of a Carbon Particle in an Pxidizing Atmosphere , 1980 .

[15]  John S. Anagnostopoulos,et al.  Influence of particle diameter distribution on the downstream particle turbulence in a two-phase, turbulent, round jet , 1993 .

[16]  Hisao Makino,et al.  Observation of detailed structure of turbulent pulverized-coal flame by optical measurement - (Part 1, time-averaged measurement of Behavior of pulverized-coal particles and flame structure) , 2006 .

[17]  Stuart W. Churchill,et al.  Numerical Solution of Problems in Multiple Scattering of Electromagnetic Radiation , 1955 .

[18]  Seung-min Hwang,et al.  Observation of Detailed Structure of Turbulent Pulverized-Coal Flame by Optical Measurement ∗ ( Part 2 , Instantaneous Two-Dimensional Measurement of Combustion Reaction Zone and Pulverized-Coal Particles ) , 2006 .

[19]  Moshe Matalon,et al.  Weak Burning and Gas-Phase Ignition about a Carbon Particle in an Oxidizing Atmosphere , 1981 .

[20]  John S. Anagnostopoulos,et al.  The prediction of pulverized greek lignite combustion in axisymmetric furnaces , 1993 .

[21]  F. Bracco,et al.  Stochastic particle dispersion modeling and the tracer‐particle limit , 1992 .

[22]  Michael A. Leschziner,et al.  A time-correlated stochastic model for particle dispersion in anisotropic turbulence , 1991 .

[23]  M. Modest Radiative heat transfer , 1993 .

[24]  A. Makino An approximate explicit expression for the combustion rate of a small carbon particle , 1992 .

[25]  J. L. Ferrín,et al.  Numerical simulation of a pulverized coal furnace , 1996 .

[26]  Kalyan Annamalai,et al.  Interactive processes in gasification and combustion—II. Isolated carbon, coal and porous char particles , 1993 .

[27]  Moshe Matalon,et al.  Steady burning of a solid particle , 1982 .