A Snapshot Survey for Gravitational Lenses among z ≥ 4.0 Quasars. II. Constraints on the 4.0 < z < 5.4 Quasar Population

Over the last few years, the Sloan Digital Sky Survey (SDSS) has discovered several hundred quasars with redshift between 4.0 and 6.4. Including the effects of magnification bias, one expects a priori that an appreciable fraction of these objects are gravitationally lensed. We have used the Advanced Camera for Surveys on the Hubble Space Telescope to carry out a snapshot imaging survey of high-redshift SDSS quasars to search for gravitationally split lenses. This paper, the first in a series reporting the results of the survey, describes snapshot observations of four quasars at z = 5.74, 5.82, 5.99, and 6.30, respectively. We find that none of these objects has a lensed companion within 5 mag with a separation larger than 03; within 2.5 mag we can rule out companions within 01. Based on the nondetection of strong lensing in these four systems, we constrain the z ~ 6 luminosity function to a slope of β > -4.63 (3 σ), assuming a break in the quasar luminosity function at M = -24.1. We discuss the implications of this constraint on the ionizing background due to quasars in the early universe. Given that these quasars are not highly magnified, estimates of the masses of their central engines by the Eddington argument must be taken seriously, possibly challenging models of black hole formation.

[1]  et al,et al.  The Discovery of a Luminous z = 5.80 Quasar from the Sloan Digital Sky Survey , 2000, astro-ph/0005414.

[2]  Cambridge,et al.  Gemini-South+FLAMINGOS Demonstration Science: Near-Infrared Spectroscopy of the z = 5.77 Quasar SDSS J083643.85+005453.3 , 2003, astro-ph/0309468.

[3]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[4]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. VI. The Nature of the Optically Faint X-Ray Source Population , 2001 .

[5]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[6]  J. Gott,et al.  The Statistics of gravitational lenses: The Distributions of image angular separations and lens redshifts , 1984 .

[7]  C. Alcock Gravitational lenses , 1982, Nature.

[8]  High-redshift quasars found in sloan digital sky survey commissioning data. III. A color-selected sample at i* <20 in the fall equatorial stripe , 2000, astro-ph/0008122.

[9]  On the Threshold of the Reionization Epoch , 2001, astro-ph/0108069.

[10]  Renyue Cen,et al.  A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z=6.28 Quasar SDSS 1030+0524 , 2002 .

[11]  Constraining the Redshift z=6 Quasar Luminosity Function Using Gravitational Lensing , 2002, astro-ph/0206441.

[12]  R. F. Mushotzky,et al.  Resolving the extragalactic hard X-ray background , 2000, Nature.

[13]  The Cosmic Lens All-Sky Survey - II. Gravitational lens candidate selection and follow-up , 2002, astro-ph/0211069.

[14]  Global Probes of the Impact of Baryons on Dark Matter Halos , 2001, astro-ph/0102334.

[15]  Gravitational Lensing of the Sloan Digital Sky Survey High‐Redshift Quasars , 2002, astro-ph/0203119.

[16]  M. Pettini,et al.  Lyman-Continuum Emission from Galaxies at z ≃ 3.4 * , 2001 .

[17]  J. Ostriker,et al.  Semianalytical Models for Lensing by Dark Halos. I. Splitting Angles , 2000, astro-ph/0010432.

[18]  Robert H. Becker,et al.  Probing the Ionization State of the Universe at z > 6 , 2003, astro-ph/0303476.

[19]  H. Rix,et al.  Early type galaxies, dark halos, and gravitational lensing statistics , 1993 .

[20]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[21]  P. Mcdonald,et al.  The Lyα Forest Flux Distribution at z ~ 5.2 and the Evolution of the Ionizing Background , 2000, astro-ph/0008045.

[22]  Cristiano Porciani,et al.  Gravitational Lensing of Distant Supernovae in Cold Dark Matter Universes , 1998, astro-ph/9810403.

[23]  How neutral is the intergalactic medium at z ∼ 6? , 2001, astro-ph/0111346.

[24]  et al,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[25]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[26]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[27]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[28]  Chris J. Willott,et al.  A 3 x 10 solar mass black hole in the quasar SDSS J1148+5251 at z=6.41 , 2003 .

[29]  R. Nichol,et al.  The Sloan Digital Sky Survey Quasar Catalog. II. First Data Release , 2003, astro-ph/0308443.

[30]  High-redshift quasars found in sloan digital sky survey commissioning data. IV. Luminosity function from the fall equatorial stripe sample , 2000, astro-ph/0008123.

[31]  M. SubbaRao,et al.  Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? , 2002, astro-ph/0204162.

[32]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[33]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[34]  M. Parrinello,et al.  Magnification of light from many distant quasars by gravitational lenses , 2002, Nature.

[35]  Princeton,et al.  High-redshift quasars found in sloan digital sky survey commissioning data. V. Hobby-Eberly telescope observations , 2000, astro-ph/0012083.

[37]  E. Feigelson,et al.  The Chandra Deep Survey of the Hubble Deep Field North Area. IV. An Ultradeep Image of the HDF-N , 2001, astro-ph/0102411.

[38]  James E. Gunn,et al.  Spectrscopic CCD Surveys for Quasars at Large Redshift.IV.Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission , 1995 .

[39]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[40]  Fermilab,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. VI. Sloan Digital Sky Survey Spectrograph Observations , 2001, astro-ph/0103228.

[41]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[42]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — I. The optical luminosity function of quasi-stellar objects , 2000 .

[43]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[44]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[45]  Z. Haiman,et al.  What Is the Highest Plausible Redshift of Luminous Quasars? , 2000, astro-ph/0011529.

[46]  Y. Pei Magnification of Quasars by Cosmologically Distributed Gravitational Lenses , 1995 .

[47]  G. Hinshaw,et al.  Gravitational Lensing by Isothermal Spheres with Finite Core Radii: Galaxies and Dark Matter , 1987 .

[48]  S. Djorgovski,et al.  A Multicolor CCD Survey for Faint z>4 Quasars , 1996 .

[49]  M. Irwin,et al.  Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field , 1987, Nature.

[50]  Robert H. Becker,et al.  Evolution of the ionizing background and the epoch of reionization from the spectra of z ∼ 6 quasars , 2001 .

[51]  J. Brinkmann,et al.  Determining the Lensing Fraction of SDSS Quasars: Methods and Results from the Early Data Release , 2003, astro-ph/0301464.

[52]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[53]  Mark Clampin,et al.  Overview of the Advanced Camera for Surveys on-orbit performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[54]  P. Mcdonald,et al.  Evolution of the Ionizing Radiation Background and Star Formation in the Aftermath of Cosmological Reionization , 2001, astro-ph/0110306.

[55]  E. Turner Quasars and galaxy formation. I - The z greater than 4 objects , 1991 .

[56]  Sensitive Observations at 1.4 and 250 GHz of z > 5 QSOs , 2003, astro-ph/0304097.

[57]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[58]  Bruce A. Peterson,et al.  The evolution of optically selected QSOs – II , 1987 .

[59]  Are Two z ∼ 6 Quasars Gravitationally Lensed? ∗ , 2003, astro-ph/0306450.

[60]  V. Narayanan,et al.  Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107416.

[61]  Constraints on the inner cluster mass profile and the power spectrum normalization from strong lensing statistics , 2003, astro-ph/0307301.

[62]  Alexander S. Szalay,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.