Lithium niobate photonic-crystal electro-optic modulator

Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metrics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here, we make an important step towards miniaturizing functional components on this platform, reporting high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz V−1, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58 μm3. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb s−1 with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics. Lithium niobate (LN) devices are promising for future photonic integrated circuits. Here, the authors demonstrate an electro-optic LN modulator with a very small modal volume based on photonic crystal resonator architecture.

[1]  ian,et al.  Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators , 2019 .

[2]  Amir H. Safavi-Naeini,et al.  High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate , 2016, Scientific Reports.

[3]  Sasan Fathpour,et al.  High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50  GHz. , 2016, Optics letters.

[4]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[5]  M. Wood,et al.  12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes. , 2013, Optics express.

[6]  Andrew J. Metcalf,et al.  Ultrafast electro-optic light with subcycle control , 2017, Science.

[7]  Usman A. Javid,et al.  Quantum correlations from dynamically modulated optical nonlinear interactions , 2019, Physical Review A.

[8]  Sasan Fathpour,et al.  Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. , 2015, Optics express.

[9]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[10]  M. Lončar,et al.  Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators , 2019, Optica.

[11]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  John E. Bowers,et al.  Integrated microwave photonics , 2015, 2015 International Topical Meeting on Microwave Photonics (MWP).

[13]  Toshihiko Baba,et al.  Compact and fast photonic crystal silicon optical modulators. , 2012, Optics express.

[14]  Q. Lin,et al.  Photon-level tuning of photonic nanocavities , 2019, Optica.

[15]  Ray T. Chen,et al.  High Performance Optical Modulator Based on Electro-Optic Polymer Filled Silicon Slot Photonic Crystal Waveguide , 2016, Journal of Lightwave Technology.

[16]  Q. Lin,et al.  High-quality lithium niobate photonic crystal nanocavities , 2017, 1706.08904.

[17]  M. Wood,et al.  Hybrid silicon and lithium niobate electro-optical ring modulator , 2014 .

[18]  Bryan Ellis,et al.  Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[19]  Volker J. Sorger,et al.  Review and perspective on ultrafast wavelength‐size electro‐optic modulators , 2015 .

[20]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[21]  Huiying Hu,et al.  Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .

[22]  Muping Song,et al.  Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[24]  Alan X. Wang,et al.  High-Speed Plasmonic-Silicon Modulator Driven by Epsilon-Near-zero Conductive Oxide , 2020, Journal of Lightwave Technology.

[25]  F. Baida,et al.  Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter , 2012 .

[26]  Andrew J. Mercante,et al.  Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. , 2018, Optics express.

[27]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[28]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[29]  L. Liu,et al.  High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond , 2018, Nature Photonics.

[30]  Jean-Marc Merolla,et al.  Optical and RF Characterization of a Lithium Niobate Photonic Crystal Modulator , 2014, IEEE Photonics Technology Letters.

[31]  Gabriel M. Rebeiz,et al.  Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. , 2018, Optics express.

[32]  Joseph M. Kahn,et al.  Broadband electro-optic frequency comb generation in a lithium niobate microring resonator , 2018, Nature.

[33]  Thomas F. Krauss,et al.  Electro-optic modulation in slotted resonant photonic crystal heterostructures , 2009 .

[34]  Masaya Notomi,et al.  Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. , 2009, Optics express.

[35]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[36]  Masaya Notomi,et al.  Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions , 2019, Nature Photonics.

[37]  Yunhan Luo,et al.  Electron-plasmon interaction on lithium niobate with gold nanolayer and its field distribution dependent modulation. , 2019, Optics express.

[38]  S. Fathpour,et al.  Compact Lithium Niobate Electrooptic Modulators , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  F. Baida,et al.  Enhanced Electro-optical Lithium Niobate Photonic Crystal Wire Waveguide on a Smart-cut Thin Film References and Links , 2022 .

[40]  Brian J. Smith,et al.  Bandwidth manipulation of quantum light by an electro-optic time lens , 2016, Nature Photonics.

[41]  Arnan Mitchell,et al.  Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits , 2018 .

[42]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[43]  Masaya Notomi,et al.  Toward fJ/bit optical communication in a chip , 2014 .

[44]  L. Liu,et al.  High modulation efficiency lithium niobate Michelson interferometer modulator. , 2019, Optics express.

[45]  Tzyy-Jiann Wang,et al.  Electro-optically tunable microring resonators on lithium niobate. , 2007, Optics letters.

[47]  Masaya Notomi,et al.  Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. , 2014, Optics express.

[48]  J. Bain,et al.  Acousto-optical modulation of thin film lithium niobate waveguide devices , 2019, Photonics Research.

[49]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[50]  Q. Lin,et al.  High‐Q 2D Lithium Niobate Photonic Crystal Slab Nanoresonators , 2018, Laser & Photonics Reviews.

[51]  G. Keeler,et al.  Gigahertz speed operation of epsilon-near-zero silicon photonic modulators , 2018 .