Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter

It is widely accepted that dark matter contributes about a quarter of the critical mass-energy density in our Universe. The nature of dark matter is currently unknown, with the mass of possible constituents spanning nearly one hundred orders of magnitude. The ultralight scalar field dark matter, consisting of extremely light bosons with m ∼ 10^(−22)  eV and often called “fuzzy” dark matter, provides intriguing solutions to some challenges at sub-Galactic scales for the standard cold dark matter model. As shown by Khmelnitsky and Rubakov, such a scalar field in the Galaxy would produce an oscillating gravitational potential with nanohertz frequencies, resulting in periodic variations in the times of arrival of radio pulses from pulsars. The Parkes Pulsar Timing Array (PPTA) has been monitoring 20 millisecond pulsars at two- to three-week intervals for more than a decade. In addition to the detection of nanohertz gravitational waves, PPTA offers the opportunity for direct searches for fuzzy dark matter in an astrophysically feasible range of masses. We analyze the latest PPTA data set which includes timing observations for 26 pulsars made between 2004 and 2016. We perform a search in this data set for evidence of ultralight dark matter in the Galaxy using Bayesian and Frequentist methods. No statistically significant detection has been made. We, therefore, place upper limits on the local dark matter density. Our limits, improving on previous searches by a factor of 2 to 5, constrain the dark matter density of ultralight bosons with m ≤ 10^(−23)  eV to be below 6  GeV cm^(−3) with 95% confidence in the Earth neighborhood. Finally, we discuss the prospect of probing the astrophysically favored mass range m ≳ 10^(−22)  eV with next-generation pulsar timing facilities.

[1]  V. Bromm,et al.  Minimum star-forming halo mass in axion cosmology , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[2]  F. Zwicky Republication of: The redshift of extragalactic nebulae , 1933 .

[3]  اسماعیل اصلی,et al.  31 , 2012, Tao te Ching.

[4]  M. Bailes,et al.  Gravitational waves from binary supermassive black holes missing in pulsar observations , 2015, Science.

[5]  Sinclair. Smith The Mass of the Virgo Cluster , 1936 .

[6]  A. Schneider Constraining noncold dark matter models with the global 21-cm signal , 2018, Physical Review D.

[7]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[8]  Y. Levin,et al.  Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array , 2014, 1410.3323.

[9]  Y. Levin,et al.  On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.

[10]  U. Florida,et al.  Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.

[11]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[12]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .

[13]  G. Bertone,et al.  The Local Dark Matter Density from SDSS-SEGUE G-dwarfs , 2017, 1708.07836.

[14]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[15]  D. Stinebring,et al.  LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES , 2009, 0909.1058.

[16]  Rutger van Haasteren,et al.  Understanding and analysing time-correlated stochastic signals in pulsar timing , 2012, 1202.5932.

[17]  N. Bhat,et al.  Dispersion measure variations and their effect on precision pulsar timing , 2007, astro-ph/0702366.

[18]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[19]  William H. Press,et al.  Numerical recipes in C , 2002 .

[20]  Di Li,et al.  The Five-hundred-meter Aperture Spherical radio Telescope (FAST) project , 2011, 2015 International Topical Meeting on Microwave Photonics (MWP).

[21]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[22]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[23]  M. Hertzberg,et al.  Can light dark matter solve the core-cusp problem? , 2018, Physical Review D.

[24]  F. Jenet,et al.  COHERENT NETWORK ANALYSIS FOR CONTINUOUS GRAVITATIONAL WAVE SIGNALS IN A PULSAR TIMING ARRAY: PULSAR PHASES AS EXTRINSIC PARAMETERS , 2015, 1506.01526.

[25]  Matteo Viel,et al.  Lyman-alpha Constraints on Ultralight Scalar Dark Matter: Implications for the Early and Late Universe , 2017, 1708.00015.

[26]  D. Stinebring,et al.  From spin noise to systematics: Stochastic processes in the first International Pulsar Timing Array data release , 2016, 1602.05570.

[27]  R. B. Partridge,et al.  OPTICAL TIMING OF THE CRAB PULSAR, NP 0532. , 1972 .

[28]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[29]  Y. Levin,et al.  PULSAR OBSERVATIONS OF EXTREME SCATTERING EVENTS , 2015, 1506.07948.

[30]  R. Manchester,et al.  The ATNF Pulsar Catalogue , 2003, astro-ph/0309219.

[31]  V. Brdar,et al.  Fuzzy dark matter and nonstandard neutrino interactions , 2017, 1705.09455.

[32]  A. Lyne,et al.  An analysis of the timing irregularities for 366 pulsars , 2009, 0912.4537.

[33]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[34]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[35]  L. Hui,et al.  Implications of a prereionization 21-cm absorption signal for fuzzy dark matter , 2018, Physical Review D.

[36]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[37]  Tzihong Chiueh,et al.  Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing. , 2017, Physical review letters.

[38]  T. Lazio,et al.  The Square Kilometre Array pulsar timing array , 2013 .

[39]  S. Burke-Spolaor,et al.  Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing , 2012, 1211.5887.

[40]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[41]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[42]  S. Succi,et al.  Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  F. Feroz,et al.  TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.

[44]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[45]  Jens C. Niemeyer,et al.  Formation and structure of ultralight bosonic dark matter halos , 2018, Physical Review D.

[46]  Y. Sofue Grand Rotation Curve and Dark-Matter Halo in the Milky Way Galaxy , 2011, 1110.4431.

[47]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[48]  D. Blas,et al.  Ultralight Dark Matter Resonates with Binary Pulsars. , 2016, Physical review letters.

[49]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[50]  R. Manchester,et al.  A study of spatial correlations in pulsar timing array data , 2015, 1510.02363.

[51]  V. Rubakov,et al.  Pulsar timing signal from ultralight scalar dark matter , 2013, 1309.5888.

[52]  P. S. Ray,et al.  The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.

[53]  MON , 2020, Catalysis from A to Z.

[54]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[57]  D. Stinebring,et al.  GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES , 2014 .

[58]  G. Hobbs,et al.  High signal‐to‐noise ratio observations and the ultimate limits of precision pulsar timing , 2011, 1108.0812.

[59]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[60]  J. Cordes,et al.  Strong-field tests of gravity using pulsars and black holes , 2004 .

[61]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[62]  R. Blandford,et al.  Arrival-time analysis for a millisecond pulsar , 1984 .

[63]  M. Bailes,et al.  An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set , 2014, 1408.5129.

[64]  P. Salucci,et al.  The Local Dark Matter Density , 2012, 1212.3670.

[65]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[66]  Y. Levin,et al.  Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution , 2013, Science.

[67]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[68]  The Parkes Pulsar Timing Array Project , 2012, Publications of the Astronomical Society of Australia.

[69]  J. Read The local dark matter density , 2014, 1404.1938.

[70]  J. Gair,et al.  European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.

[71]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[72]  Jens C. Niemeyer,et al.  Cosmological particle-in-cell simulations with ultralight axion dark matter , 2016, 1608.00802.

[73]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[74]  D. Spergel,et al.  Ultra-light dark matter in ultra-faint dwarf galaxies , 2016, 1603.07321.

[75]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[76]  Daniel Grin,et al.  Using the Full Power of the Cosmic Microwave Background to Probe Axion Dark Matter , 2017, 1708.05681.

[77]  Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves , 2012, 1201.6641.

[78]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[79]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[80]  J. Cordes,et al.  PULSE INTENSITY MODULATION AND THE TIMING STABILITY OF MILLISECOND PULSARS: A CASE STUDY OF PSR J1713+0747 , 2012, 1210.7021.

[81]  M. Baldi,et al.  AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models , 2018, 1801.08144.

[82]  Y. Levin,et al.  Development of a Pulsar-Based Time-Scale , 2012, 1208.3560.

[83]  L. Wen,et al.  Detection and localization of continuous gravitational waves with pulsar timing arrays: The role of pulsar terms , 2016, 1606.04539.

[84]  D. Champion,et al.  The European Pulsar Timing Array and the Large European Array for Pulsars , 2013 .

[85]  Matteo Viel,et al.  First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.

[86]  J. Primack Triumphs and tribulations of ΛCDM, the double dark theory , 2012 .

[87]  M. Hobson,et al.  Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data , 2012, 1210.3578.

[88]  T. Treu,et al.  The Structure and Dynamics of Luminous and Dark Matter in the Early-Type Lens Galaxy of 0047–281 at z = 0.485 , 2002, astro-ph/0205281.

[89]  R. N. Manchester,et al.  Pulsar timing analysis in the presence of correlated noise , 2011, 1107.5366.

[90]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[91]  N. Toomarian,et al.  Jet Propulsion Laboratory , 2022 .

[92]  N. Porayko,et al.  Constraints on ultralight scalar dark matter from pulsar timing , 2014, 1408.4670.

[93]  M. Vallisneri,et al.  Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data , 2014, 1407.6710.

[94]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.