Robust Estimation in Generalized Partial Linear Models for Clustered Data

In this article we consider robust generalized estimating equations for the analysis of semiparametric generalized partial linear models (GPLMs) for longitudinal data or clustered data in general. We approximate the nonparametric function in the GPLM by a regression spline, and use bounded scores and leverage-based weights in the estimating equation to achieve robustness against outliers. We show that the regression spline approach avoids some of the intricacies associated with the profile-kernel method, and that robust estimation and inference can be carried out operationally as if a generalized linear model were used.

[1]  Eva Cantoni,et al.  A robust approach to longitudinal data analysis , 2004 .

[2]  C. Heyde,et al.  Multiple roots in general estimating equations , 1998 .

[3]  Giovanni Parmigiani,et al.  Semiparametric regression for count data , 2002 .

[4]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[5]  Jana Jurečková,et al.  Asymptotics for one-step m-estimators in regression with application to combining efficiency and high breakdown point , 1987 .

[6]  A. Kuk,et al.  Robust estimation in generalized linear mixed models , 2002 .

[7]  E. Ronchetti,et al.  Robust Inference for Generalized Linear Models , 2001 .

[8]  Nancy E. Heckman,et al.  Spline Smoothing in a Partly Linear Model , 1986 .

[9]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[10]  D. Ruppert,et al.  Optimally bounded score functions for generalized linear models with applications to logistic regression , 1986 .

[11]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[12]  Sanjoy K. Sinha,et al.  Robust Analysis of Generalized Linear Mixed Models , 2004 .

[13]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[14]  J S Preisser,et al.  Robust Regression for Clustered Data with Application to Binary Responses , 1999, Biometrics.

[15]  J. Rice Convergence rates for partially splined models , 1986 .

[16]  R. Carroll,et al.  Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .

[17]  Enno Mammen,et al.  Testing Parametric Versus Semiparametric Modelling in Generalized Linear Models , 1996 .

[18]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[19]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[20]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[21]  Raymond J. Carroll,et al.  Semiparametric regression for clustered data , 2001 .

[22]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[23]  Guangyu Wang,et al.  Breakdown points of t-type regression estimators , 2000 .

[24]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[25]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[26]  R. Carroll,et al.  Conditionally Unbiased Bounded-Influence Estimation in General Regression Models, with Applications to Generalized Linear Models , 1989 .

[27]  Marlene Müller,et al.  Estimation and testing in generalized partial linear models—A comparative study , 2001, Stat. Comput..

[28]  Zhongyi Zhu,et al.  Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .

[29]  Wei Pan,et al.  Goodness‐of‐fit Tests for GEE with Correlated Binary Data , 2002 .

[30]  Xuming He,et al.  Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .

[31]  Alice Richardson,et al.  13 Approaches to the robust estimation of mixed models , 1997 .

[32]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[33]  Marvin D. Troutt,et al.  A Further VDR-type Density Representation Based on the Box-muller Method , 1997 .

[34]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[35]  Naisyin Wang Marginal nonparametric kernel regression accounting for within‐subject correlation , 2003 .

[36]  W. Fung,et al.  Median regression for longitudinal data , 2003, Statistics in medicine.