Simulation-Based Optimization of a Piezoelectric Energy Harvester using Artificial Neural Networks and Genetic Algorithm

The problem of finding optimal design parameters for a piezoelectric energy harvester is studied. An accurate iterative numerical simulation model based on Euler-Bernoulli beam theory is used as the basis for defining a simulation-based optimization problem. Due to the complexity of the simulation model, evaluation of the Objective Function (OF) is difficult and computationally expensive. In order to remedy this problem, an Artificial Neural Network (ANN) model is trained based on a dataset obtained from the iterative numerical simulation. ANN is then used during the optimization process instead of the original expensive-to-evaluate simulation model. Performance evaluation for the ANN is performed using a set of test data. Genetic Algorithm (GA) optimization method based on the trained ANN model is further developed and optimum system parameters are obtained for an energy harvester based on piezoelectric patches and cantilever aluminum beam.

[1]  Alireza Keshmiri,et al.  A Wideband Piezoelectric Energy Harvester Design by Using Multiple Non-Uniform Bimorphs , 2018, Vibration.

[2]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[3]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[4]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .

[5]  R. Sundaram A First Course in Optimization Theory: Bibliography , 1996 .

[6]  Libo Qian,et al.  Simultaneous Wireless Strain Sensing and Energy Harvesting From Multiple Piezo-Patches for Structural Health Monitoring Applications , 2019, IEEE Transactions on Industrial Electronics.

[7]  D. Guyomar,et al.  Toward energy harvesting using active materials and conversion improvement by nonlinear processing , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  F. Dai,et al.  Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate , 2018, Energy Conversion and Management.

[9]  Igor V. Tetko,et al.  Neural network studies, 1. Comparison of overfitting and overtraining , 1995, J. Chem. Inf. Comput. Sci..

[10]  Dong Sam Ha,et al.  Circuit design for an impact-type piezoelectric system for micro-wind energy harvesting , 2017, 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE).

[11]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[12]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[13]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[14]  Warren S. Sarle,et al.  Neural Networks and Statistical Models , 1994 .

[15]  Quan Wang,et al.  A new nonlinearly tapered FGM piezoelectric energy harvester , 2018, Engineering Structures.

[16]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[17]  Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 "ANSI/IEEE Standard on Piezoelectricity" , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  Shaahin Filizadeh,et al.  Numerical modeling and analysis of self-powered synchronous switching circuit for the study of transient charging behavior of a vibration energy harvester , 2019, Smart Materials and Structures.

[19]  Xin-She Yang,et al.  Nature-Inspired Optimization Algorithms: Challenges and Open Problems , 2020, J. Comput. Sci..

[20]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[21]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[22]  O. Korostynska Energy Harvesting Technologies , 2011 .

[23]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[24]  Jerry Banks,et al.  Handbook of simulation - principles, methodology, advances, applications, and practice , 1998, A Wiley-Interscience publication.

[25]  Shaahin Filizadeh,et al.  Modeling of capacitor charging dynamics in an energy harvesting system considering accurate electromechanical coupling effects , 2018 .

[26]  R. H. Smith Optimization for Simulation : Theory vs . Practice , 2002 .

[27]  Man-Kay Law,et al.  Fully Integrated Inductor-Less Flipping-Capacitor Rectifier for Piezoelectric Energy Harvesting , 2017, IEEE Journal of Solid-State Circuits.

[28]  Dong Sam Ha,et al.  Alternating Resistive Impedance Matching for an Impact-Type Microwind Piezoelectric Energy Harvester , 2018, IEEE Transactions on Industrial Electronics.

[29]  Seiji Hashimoto,et al.  A flapping-based piezoelectric power generator for bicycle applications , 2017, 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE).

[30]  Sijun Du,et al.  An Inductorless Bias-Flip Rectifier for Piezoelectric Energy Harvesting , 2017, IEEE Journal of Solid-State Circuits.

[31]  Mickaël Lallart,et al.  Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation , 2011, Micromachines.

[32]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[33]  Alexander Shapiro Simulation based optimization , 1996, Winter Simulation Conference.

[34]  Sang-Gook Kim,et al.  Ultra-wide bandwidth piezoelectric energy harvesting , 2011 .