The engine driving the ship: metabolic steering of cell proliferation and death

[1]  D. Green,et al.  Mitochondria and cell death: outer membrane permeabilization and beyond , 2010, Nature Reviews Molecular Cell Biology.

[2]  A. Levine,et al.  Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function , 2010, Proceedings of the National Academy of Sciences.

[3]  S. Sugano,et al.  Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species , 2010, Proceedings of the National Academy of Sciences.

[4]  W. Freije,et al.  Metabolic control of G1–S transition: cyclin E degradation by p53-induced activation of the ubiquitin–proteasome system , 2010, The Journal of cell biology.

[5]  L. Obeid,et al.  The BCL-2 Protein BAK Is Required for Long-chain Ceramide Generation during Apoptosis* , 2010, The Journal of Biological Chemistry.

[6]  M. Colombini,et al.  Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane , 2010, Apoptosis.

[7]  Clifford A. Meyer,et al.  Transcriptional role of cyclin D1 in development revealed by a genetic–proteomic screen , 2010, Nature.

[8]  C. Deng,et al.  SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. , 2010, Cancer cell.

[9]  L. Nutt,et al.  Metabolic Control of Oocyte Apoptosis Mediated by 14-3-3ζ-Regulated Dephosphorylation of Caspase-2 (DOI:10.1016/j.devcel.2009.04.005) , 2010 .

[10]  S. Moncada,et al.  E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation , 2009, Proceedings of the National Academy of Sciences.

[11]  David S. Park,et al.  Amyloid-β42 signals tau hyperphosphorylation and compromises neuronal viability by disrupting alkylacylglycerophosphocholine metabolism , 2009, Proceedings of the National Academy of Sciences.

[12]  D. Green,et al.  Novel roles for GAPDH in cell death and carcinogenesis , 2009, Cell Death and Differentiation.

[13]  D. Newmeyer,et al.  Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. , 2009, Molecular biology of the cell.

[14]  Dominique A. Glauser,et al.  The FoxO/Bcl-6/cyclin D2 pathway mediates metabolic and growth factor stimulation of proliferation in Min6 pancreatic β-cells , 2009, Journal of receptor and signal transduction research.

[15]  P. Ongusaha,et al.  GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. , 2009, Molecular cell.

[16]  L. Nutt,et al.  Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase‐2 , 2009, The EMBO journal.

[17]  J. G. Pastorino,et al.  Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism , 2009, Cell cycle.

[18]  D. Green,et al.  Characterization of cytoplasmic caspase-2 activation by induced proximity. , 2009, Molecular cell.

[19]  G. Krumschnabel,et al.  Caspase-2: killer, savior and safeguard—emerging versatile roles for an ill-defined caspase , 2009, Oncogene.

[20]  C. Sardet,et al.  The CDK4–pRB–E2F1 pathway controls insulin secretion , 2009, Nature Cell Biology.

[21]  S. Moncada,et al.  The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1 , 2009, Nature Cell Biology.

[22]  A. Lane,et al.  Nuclear Targeting of 6-Phosphofructo-2-kinase (PFKFB3) Increases Proliferation via Cyclin-dependent Kinases* , 2009, The Journal of Biological Chemistry.

[23]  Justin R. Cross,et al.  ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation , 2009, Science.

[24]  Pumin Zhang,et al.  The function of APC/CCdh1 in cell cycle and beyond , 2009, Cell Division.

[25]  J. Rathmell,et al.  Glucose Metabolism Attenuates p53 and Puma-dependent Cell Death upon Growth Factor Deprivation* , 2008, Journal of Biological Chemistry.

[26]  M. Deshmukh,et al.  Glucose Metabolism Inhibits Apoptosis in Neurons and Cancer Cells by Redox Inactivation of Cytochrome c , 2008, Nature Cell Biology.

[27]  Tak W. Mak,et al.  Cytochrome c: functions beyond respiration , 2008, Nature Reviews Molecular Cell Biology.

[28]  Rebecca C Taylor,et al.  Apoptosis: controlled demolition at the cellular level , 2008, Nature Reviews Molecular Cell Biology.

[29]  N. Danial,et al.  BCL-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death , 2007, Clinical Cancer Research.

[30]  A. Degterev,et al.  A genome-wide RNAi screen reveals multiple regulators of caspase activation , 2007, The Journal of cell biology.

[31]  D. Hardie,et al.  AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy , 2007, Nature Reviews Molecular Cell Biology.

[32]  Pascal Barbry,et al.  GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation , 2007, Cell.

[33]  Lewis C. Cantley,et al.  AKT/PKB Signaling: Navigating Downstream , 2007, Cell.

[34]  J. Rathmell,et al.  Filling a GAP(DH) in Caspase-Independent Cell Death , 2007, Cell.

[35]  Bing Li,et al.  The Role of Chromatin during Transcription , 2007, Cell.

[36]  D. Stacey,et al.  Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell , 2006, Cell Division.

[37]  Ji Luo,et al.  The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism , 2006, Nature Reviews Genetics.

[38]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[39]  Anping Li,et al.  Cyclin D1 Determines Mitochondrial Function InVivo , 2006, Molecular and Cellular Biology.

[40]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[41]  R. V. van Lier,et al.  The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. , 2006, Immunity.

[42]  S. Kornbluth,et al.  The apoptosome: physiological, developmental, and pathological modes of regulation. , 2006, Developmental cell.

[43]  D. Green,et al.  Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. , 2006, Molecular cell.

[44]  James M. Roberts,et al.  A New Description of Cellular Quiescence , 2006, PLoS biology.

[45]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[46]  Utpal Banerjee,et al.  Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. , 2005, Developmental cell.

[47]  L. Nutt,et al.  Metabolic Regulation of Oocyte Cell Death through the CaMKII-Mediated Phosphorylation of Caspase-2 , 2005, Cell.

[48]  T. Kuwana,et al.  PUMA Couples the Nuclear and Cytoplasmic Proapoptotic Function of p53 , 2005, Science.

[49]  D. Schubert Glucose metabolism and Alzheimer's disease , 2005, Ageing Research Reviews.

[50]  Russell G. Jones,et al.  AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. , 2005, Molecular cell.

[51]  D. Green,et al.  Do inducers of apoptosis trigger caspase-independent cell death? , 2005, Nature Reviews Molecular Cell Biology.

[52]  David Beach,et al.  Glycolytic enzymes can modulate cellular life span. , 2005, Cancer research.

[53]  C. Thompson,et al.  Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. , 2004, Molecular cell.

[54]  J. Dice,et al.  Mechanisms of chaperone-mediated autophagy. , 2004, The international journal of biochemistry & cell biology.

[55]  S. Kumar,et al.  The biochemical mechanism of caspase-2 activation , 2004, Cell Death and Differentiation.

[56]  D. Green,et al.  The Pathophysiology of Mitochondrial Cell Death , 2004, Science.

[57]  J. Tschopp,et al.  The PIDDosome, a Protein Complex Implicated in Activation of Caspase-2 in Response to Genotoxic Stress , 2004, Science.

[58]  J. Auwerx,et al.  Impaired pancreatic growth, β cell mass, and β cell function in E2F1 –/– mice , 2004 .

[59]  N. Hay,et al.  Akt Inhibits Apoptosis Downstream of BID Cleavage via a Glucose-Dependent Mechanism Involving Mitochondrial Hexokinases , 2004, Molecular and Cellular Biology.

[60]  W. Zwerschke,et al.  Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. , 2003, The Biochemical journal.

[61]  P. Hammerman,et al.  Akt-Directed Glucose Metabolism Can Prevent Bax Conformation Change and Promote Growth Factor-Independent Survival , 2003, Molecular and Cellular Biology.

[62]  S. R. Datta,et al.  BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis , 2003, Nature.

[63]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[64]  Petr Pancoska,et al.  p53 has a direct apoptogenic role at the mitochondria. , 2003, Molecular cell.

[65]  S. R. Datta,et al.  Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. , 2002, Developmental cell.

[66]  Y. Hannun,et al.  De Novo Ceramide Regulates the Alternative Splicing of Caspase 9 and Bcl-x in A549 Lung Adenocarcinoma Cells , 2002, The Journal of Biological Chemistry.

[67]  J. Hoek,et al.  Mitochondrial Binding of Hexokinase II Inhibits Bax-induced Cytochrome c Release and Apoptosis* , 2002, The Journal of Biological Chemistry.

[68]  Xuejun Jiang,et al.  Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. , 2002, Molecular cell.

[69]  H. Yamaguchi,et al.  The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change , 2001, Oncogene.

[70]  P. Rustin,et al.  Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[71]  K. Vousden,et al.  PUMA, a novel proapoptotic gene, is induced by p53. , 2001, Molecular cell.

[72]  M. V. Vander Heiden,et al.  In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. , 2000, Molecular cell.

[73]  T. Taniguchi,et al.  Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. , 2000, Science.

[74]  S. Rabacchi,et al.  Caspase-2 Mediates Neuronal Cell Death Induced by β-Amyloid , 2000, The Journal of Neuroscience.

[75]  P. Nurse A Long Twentieth Century of the Cell Cycle and Beyond , 2000, Cell.

[76]  D. Nicholson,et al.  Caspase structure, proteolytic substrates, and function during apoptotic cell death , 1999, Cell Death and Differentiation.

[77]  T. Ito,et al.  Ceramide Induces Bcl2 Dephosphorylation via a Mechanism Involving Mitochondrial PP2A* , 1999, The Journal of Biological Chemistry.

[78]  Susan S. Taylor,et al.  Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. , 1999, Molecular cell.

[79]  R. Bucala,et al.  An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Seol,et al.  A Caspase-9 Variant Missing the Catalytic Site Is an Endogenous Inhibitor of Apoptosis* , 1999, The Journal of Biological Chemistry.

[81]  M. Moskowitz,et al.  Defects in regulation of apoptosis in caspase-2-deficient mice. , 1998, Genes & development.

[82]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[83]  L. Peso,et al.  Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. , 1997, Science.

[84]  S. R. Datta,et al.  Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery , 1997, Cell.

[85]  Xiaodong Wang,et al.  Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3 , 1997, Cell.

[86]  Xiaodong Wang,et al.  Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c , 1996, Cell.

[87]  C. Sherr,et al.  D-type cyclins. , 1995, Trends in biochemical sciences.

[88]  D. Thorley-Lawson,et al.  A novel form of Epstein-Barr virus latency in normal B cells in vivo , 1995, Cell.

[89]  John Calvin Reed,et al.  Tumor suppressor p53 is a direct transcriptional activator of the human bax gene , 1995, Cell.

[90]  C. Sherr G1 phase progression: Cycling on cue , 1994, Cell.

[91]  D. Newmeyer,et al.  Cell-free apoptosis in Xenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria , 1994, Cell.

[92]  D. Wood,et al.  The mitochondrial tricarboxylate transport protein. cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins. , 1993, The Journal of biological chemistry.

[93]  John Calvin Reed,et al.  Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA , 1993, Nature.

[94]  B. Puschendorf,et al.  Histone acetylation and histone synthesis in mouse fibroblasts during quiescence and restimulation into S-phase , 1991, Molecular and Cellular Biochemistry.

[95]  M. Wikstrom Proton pump coupled to cytochrome c oxidase in mitochondria , 1977, Nature.

[96]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[97]  O. Ilkayeva,et al.  Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. , 2007, Molecular and cellular biology.

[98]  J. Auwerx,et al.  Impaired pancreatic growth, beta cell mass, and beta cell function in E2F1 (-/- )mice. , 2004, The Journal of clinical investigation.

[99]  B. Amir-Ahmady,et al.  Dietary regulation of expression of glucose-6-phosphate dehydrogenase. , 2001, Annual review of nutrition.

[100]  J. Klein Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids , 2000, Journal of Neural Transmission.

[101]  A. Lange,et al.  Fructose‐2,6‐bisphosphate and control of carbohydrate metabolism in eukaryotes , 1999, BioFactors.

[102]  S. Korsmeyer,et al.  Cell Death Critical Control Points , 2004, Cell.