Theory-based benchmarking of the blended force-based quasicontinuum method☆

We formulate an atomistic-to-continuum coupling method based on blending atomistic and continuum forces. Our precise choice of blending mechanism is informed by theoretical predictions. We present a range of numerical experiments studying the accuracy of the scheme, focusing in particular on its stability. These experiments confirm and extend the theoretical predictions, and demonstrate a superior accuracy of B-QCF over energy-based blending schemes.

[1]  Christoph Ortner,et al.  Iterative Methods for the Force-based Quasicontinuum Approximation , 2009 .

[2]  Christoph Ortner A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D , 2011, Math. Comput..

[3]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[4]  F. Legoll,et al.  Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics , 2005 .

[5]  Christoph Ortner,et al.  Atomistic-to-continuum coupling , 2013, Acta Numerica.

[6]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[7]  PING LIN,et al.  Convergence Analysis of a Quasi-Continuum Approximation for a Two-Dimensional Material Without Defects , 2007, SIAM J. Numer. Anal..

[8]  Christoph Ortner,et al.  Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces: a 2D model problem , 2011 .

[9]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[10]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[11]  Christoph Ortner,et al.  Sharp Stability Estimates for the Force-Based Quasicontinuum Approximation of Homogeneous Tensile Deformation , 2010, Multiscale Model. Simul..

[12]  Paul T. Bauman,et al.  Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method , 2008 .

[13]  Alexander V. Shapeev,et al.  Analysis of blended atomistic/continuum hybrid methods , 2014, Numerische Mathematik.

[14]  Alexander V. Shapeev,et al.  Analysis of an Energy-based Atomistic/Continuum Coupling Approximation of a Vacancy in the 2D Triangular Lattice , 2011 .

[15]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[16]  Alexander V. Shapeev,et al.  Analysis of an energy-based atomistic/continuum approximation of a vacancy in the 2D triangular lattice , 2013, Math. Comput..

[17]  Xingjie Helen Li,et al.  A Generalized Quasi-Nonlocal Atomistic-to-Continuum Coupling Method with Finite Range Interaction , 2010 .

[18]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[19]  C. Ortner,et al.  ON THE STABILITY OF BRAVAIS LATTICES AND THEIR CAUCHY-BORN APPROXIMATIONS ∗ , 2012 .

[20]  J. Tinsley Oden,et al.  On the application of the Arlequin method to the coupling of particle and continuum models , 2008 .

[21]  Mark S. Shephard,et al.  Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force , 2007 .

[22]  Brian Van Koten,et al.  Analysis of Energy-Based Blended Quasi-Continuum Approximations , 2011, SIAM J. Numer. Anal..

[23]  Pingbing Ming,et al.  Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method , 2009, Multiscale Model. Simul..

[24]  Max Gunzburger,et al.  Bridging Methods for Atomistic-to-Continuum Coupling and Their Implementation , 2009 .

[25]  Alexander V. Shapeev,et al.  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in One and Two Dimensions , 2010, Multiscale Model. Simul..

[26]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[27]  Jianfeng Lu,et al.  Convergence of a Force‐Based Hybrid Method in Three Dimensions , 2013 .

[28]  Alexander V. Shapeev Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in Three Dimensions , 2012, SIAM J. Sci. Comput..

[29]  Pavel B. Bochev,et al.  A Force-Based Blending Model forAtomistic-to-Continuum Coupling , 2007 .

[30]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[31]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[32]  Mitchell Luskin,et al.  AN ANALYSIS OF THE EFFECT OF GHOST FORCE OSCILLATION ON QUASICONTINUUM ERROR , 2008 .

[33]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[34]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[35]  Alexander V. Shapeev,et al.  The Spectrum of the Force-Based Quasicontinuum Operator for a Homogeneous Periodic Chain , 2010, Multiscale Model. Simul..

[36]  Christoph Ortner,et al.  Accuracy of quasicontinuum approximations near instabilities , 2009, 0905.2914.

[37]  Mitchell Luskin,et al.  Analysis of a force-based quasicontinuum approximation , 2006 .

[38]  Harold S. Park,et al.  Bridging Scale Methods for Nanomechanics and Materials , 2006 .

[39]  Christoph Ortner,et al.  Sharp Stability Estimates for the Force-based Quasicontinuum Method , 2009 .

[40]  Christoph Ortner,et al.  Positive Definiteness of the Blended Force-Based Quasicontinuum Method , 2011, Multiscale Model. Simul..

[41]  M. Luskin,et al.  Formulation and optimization of the energy-based blended quasicontinuum method , 2011, 1112.2377.

[42]  Christoph Ortner,et al.  Construction and Sharp Consistency Estimates for Atomistic/Continuum Coupling Methods with General Interfaces: A Two-Dimensional Model Problem , 2012, SIAM J. Numer. Anal..

[43]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .