Finite element analysis of pressure formulation of the elastoacoustic problem

AbstractIn this paper we analyze the non symmetric pressure/displacement formulation of the elastoacoustic vibration problem and show its equivalence with the (symmetric) stiffness coupling formulation. We introduce discretizations for these problems based on Lagrangian finite elements. We show that both formulations are also equivalent at discrete level and prove optimal error estimates for eigenfunctions and eigenvalues. Both formulations are rewritten such as to be solved with a standard Matlab eigensolver. We report numerical results comparing the efficiency of the methods over some test examples.

[1]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[2]  Alfredo Bermúdez,et al.  Finite element computation of the vibration modes of a fluid—solid system , 1994 .

[3]  M. Petyt,et al.  Introduction to Finite Element Vibration Analysis , 2016 .

[4]  Ernst P. Stephan,et al.  Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes , 1990 .

[5]  M. Dauge Problèmes de Neumann et de Dirichlet sur un polyèdre dans R3: régularité dans des espaces de Sobolev Lp , 1988 .

[6]  C. Conca,et al.  Fluids And Periodic Structures , 1995 .

[7]  Roger Ohayon,et al.  Interactions fluides-structures , 1992 .

[8]  Lorraine G. Olson,et al.  A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems , 1983 .

[9]  G. Sandberg A new strategy for solving fluid-structure problems , 1995 .

[10]  William G. Kolata,et al.  Approximation in variationally posed eigenvalue problems , 1978 .

[11]  Yves Ousset,et al.  A displacement method for the analysis of vibrations of coupled fluid-structure systems , 1978 .

[12]  A. Bermúdez,et al.  Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .

[13]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[14]  Alfredo Bermúdez,et al.  Analysis of a finite element method for pressure/potential formulation of elastoacoustic spectral problems , 2002, Math. Comput..

[15]  J. Wandinger Analysis of Small Vibrations of Coupled Fluid‐Structure Systems , 1994 .

[16]  Christian Soize,et al.  Structural Acoustics and Vibration , 2001 .