MLAN: Multi-Level Adversarial Network for Domain Adaptive Semantic Segmentation

[1]  Shijian Lu,et al.  Scale variance minimization for unsupervised domain adaptation in image segmentation , 2021, Pattern Recognit..

[2]  Liang Zheng,et al.  Category-Level Adversarial Adaptation for Semantic Segmentation Using Purified Features , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Shijian Lu,et al.  FSDR: Frequency Space Domain Randomization for Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Shijian Lu,et al.  Cross-View Regularization for Domain Adaptive Panoptic Segmentation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Lei Zhu,et al.  Challenging tough samples in unsupervised domain adaptation , 2021, Pattern Recognit..

[6]  Xiaobing Zhang,et al.  Contextual-Relation Consistent Domain Adaptation for Semantic Segmentation , 2020, ECCV.

[7]  In So Kweon,et al.  Unsupervised Intra-Domain Adaptation for Semantic Segmentation Through Self-Supervision , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Stefano Soatto,et al.  FDA: Fourier Domain Adaptation for Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Xiu-Shen Wei,et al.  Exploring Categorical Regularization for Domain Adaptive Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Wen-mei W. Hwu,et al.  Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Hyeran Byun,et al.  Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Tieniu Tan,et al.  Exploring uncertainty in pseudo-label guided unsupervised domain adaptation , 2019, Pattern Recognit..

[13]  Sridha Sridharan,et al.  Correlation-aware Adversarial Domain Adaptation and Generalization , 2019, Pattern Recognit..

[14]  Dacheng Tao,et al.  Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation , 2019, NeurIPS.

[15]  Xiaofeng Liu,et al.  Confidence Regularized Self-Training , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[16]  Nuno Vasconcelos,et al.  Bidirectional Learning for Domain Adaptation of Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Junqing Yu,et al.  Significance-Aware Information Bottleneck for Domain Adaptive Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Yi-Hsuan Tsai,et al.  Domain Adaptation for Structured Output via Discriminative Patch Representations , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[19]  Patrick Pérez,et al.  ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Yi Yang,et al.  Taking a Closer Look at Domain Shift: Category-Level Adversaries for Semantics Consistent Domain Adaptation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  B. V. Vijaya Kumar,et al.  Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-training , 2018, ECCV.

[22]  Jiaying Liu,et al.  Adaptive Batch Normalization for practical domain adaptation , 2018, Pattern Recognit..

[23]  Luc Van Gool,et al.  Domain Adaptive Faster R-CNN for Object Detection in the Wild , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Ming-Hsuan Yang,et al.  Learning to Adapt Structured Output Space for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[25]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[26]  Chao Li,et al.  Active multi-kernel domain adaptation for hyperspectral image classification , 2017, Pattern Recognit..

[27]  Hans-Peter Kriegel,et al.  DBSCAN Revisited, Revisited , 2017, ACM Trans. Database Syst..

[28]  Min Sun,et al.  No More Discrimination: Cross City Adaptation of Road Scene Segmenters , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[29]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Trevor Darrell,et al.  FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation , 2016, ArXiv.

[31]  Vladlen Koltun,et al.  Playing for Data: Ground Truth from Computer Games , 2016, ECCV.

[32]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[36]  Trevor Darrell,et al.  Fully convolutional networks for semantic segmentation , 2014, Computer Vision and Pattern Recognition.

[37]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[38]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[39]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.