Strang-Type Preconditioners for Solving Linear Systems from Delay Differential Equations
暂无分享,去创建一个
[1] T. Chan. An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .
[2] Xiao-Qing Jin,et al. Developments and Applications of Block Toeplitz Iterative Solvers , 2003 .
[3] L. Torelli,et al. Stability of numerical methods for delay differential equations , 1989 .
[4] Daniele Bertaccini. Reliable preconditioned iterative linear solvers for some numerical integrators , 2001 .
[5] L. Brugnano,et al. Solving differential problems by multistep initial and boundary value methods , 1998 .
[6] Eugene E. Tyrtyshnikov,et al. Circulant preconditioners with unbounded inverses , 1995 .
[7] Fabio Di Benedetto,et al. Analysis of Preconditioning Techniques for Ill-Conditioned Toeplitz Matrices , 1995, SIAM J. Sci. Comput..
[8] T. Mori,et al. Simple stability criteria for single and composite linear systems with time delays , 1981 .
[9] Raymond H. Chan,et al. Strang‐type preconditioners for systems of LMF‐based ODE codes , 2001 .
[10] Daniele Bertaccini,et al. A Circulant Preconditioner for the Systems of LMF-Based ODE Codes , 2000, SIAM J. Sci. Comput..
[11] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[12] John R. Gilbert,et al. Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..
[13] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[14] Erik Noldus,et al. A way to stabilize linear systems with delayed state , 1983, Autom..
[15] Michael K. Ng,et al. Skew-Circulant Preconditioners for Systems of LMF-Based ODE Codes , 2000, NAA.
[16] Tian Hong-jiong,et al. The numerical stability of linear multistep methods for delay differential equations with many delays , 1996 .